Suppr超能文献

无机表面层在锂金属负极固态电解质界面演变中的作用

Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes.

作者信息

Kamphaus Ethan P, Angarita-Gomez Stefany, Qin Xueping, Shao Minhua, Engelhard Mark, Mueller Karl T, Murugesan Vijayakumar, Balbuena Perla B

机构信息

Department of Chemical Engineering , Texas A&M University , College Station , Texas 77843 , United States.

Department of Chemical and Biological Engineering , HKUST , Clear Water Bay , Kowloon , Hong Kong , China.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 28;11(34):31467-31476. doi: 10.1021/acsami.9b07587. Epub 2019 Aug 14.

Abstract

Lithium metal is an ideal anode for rechargeable lithium-battery technology. However, the extreme reactivity of Li metal with electrolytes leads to solid electrolyte interphase (SEI) layers that often impede Li transport across interfaces. The challenge is to predict the chemical, structural, and topographical heterogeneities of SEI layers arising from a multitude of interfacial constituents. Traditionally, the pathways and products of electrolyte decomposition processes were analyzed with the basic and simplifying presumption of an initial pristine Li-metal surface. However, ubiquitous inorganic passivation layers on Li metal can reduce electronic charge transfer to the electrolyte and significantly alter the SEI layer evolution. In this study, we analyzed the effect of nanometric LiO, LiOH, and LiCO as surface passivation layers on the interfacial reactivity of Li metal, using ab initio molecular dynamics (AIMD) calculations and X-ray photoelectron spectroscopy (XPS) measurements. These nanometric layers impede the electronic charge transfer to the electrolyte and thereby provide some degree of passivation (compared to pristine lithium metal) by altering the redox-based decomposition process. The LiO, LiOH, and LiCO layers admit varying levels of electron transfer from a Li-metal slab and subsequent storage of the electronic charges within their structures. As a result, their ability to transfer electrons to the electrolyte molecules, as well as the extent of decomposition of bis(trifluoromethanesulfonyl)imide anions, is significantly reduced compared to similar processes on pristine Li metal. The XPS experiments revealed that when LiO is the major component on the altered surface, LiF phases formed to a greater extent. The presence of a dominant LiOH layer, however, results in enhanced sulfur decomposition processes. From AIMD studies, these observations can be explained based on the calculated quantities of electronic charge transfer found for each of the passivating films.

摘要

锂金属是可充电锂电池技术的理想负极。然而,锂金属与电解质的极高反应活性会导致形成固体电解质界面(SEI)层,这常常会阻碍锂离子在界面间的传输。挑战在于预测由多种界面成分产生的SEI层的化学、结构和形貌异质性。传统上,电解质分解过程的途径和产物是在初始原始锂金属表面这一基本且简化的假设下进行分析的。然而,锂金属表面普遍存在的无机钝化层会减少向电解质的电子电荷转移,并显著改变SEI层的演变。在本研究中,我们使用从头算分子动力学(AIMD)计算和X射线光电子能谱(XPS)测量,分析了纳米级LiO、LiOH和Li₂CO₃作为表面钝化层对锂金属界面反应活性的影响。这些纳米级层阻碍了向电解质的电子电荷转移,从而通过改变基于氧化还原的分解过程提供了一定程度的钝化(与原始锂金属相比)。LiO、LiOH和Li₂CO₃层允许从锂金属平板转移不同水平的电子,并随后将电子电荷存储在其结构内。因此,与原始锂金属上的类似过程相比,它们向电解质分子转移电子的能力以及双(三氟甲磺酰)亚胺阴离子的分解程度都显著降低。XPS实验表明,当LiO是改变后的表面上的主要成分时,LiF相形成的程度更大。然而,存在占主导地位的LiOH层会导致硫分解过程增强。从AIMD研究来看,这些观察结果可以根据为每种钝化膜计算出的电子电荷转移量来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验