Suppr超能文献

生物控制 S-亚硝基硫醇反应性:sigma 空穴相互作用的潜在作用。

Biological control of S-nitrosothiol reactivity: potential role of sigma-hole interactions.

机构信息

Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, Wisconsin 53201-1881, USA.

出版信息

Phys Chem Chem Phys. 2020 Mar 28;22(12):6595-6605. doi: 10.1039/c9cp06377c. Epub 2020 Mar 11.

Abstract

S-Nitrosothiols (RSNOs) are ubiquitous biomolecules whose chemistry is tightly controlled in vivo, although the specific molecular mechanisms behind this biological control remain unknown. In this work, we demonstrate, using high-level ab initio and DFT calculations, the ability of RSNOs to participate in intermolecular interactions with electron pair donors/Lewis bases (LBs) via a σ-hole, a region of positive electrostatic potential on the molecular surface at the extension of the N-S bond. Importantly, σ-hole binding is able to modulate the properties of RSNOs by changing the balance between two chemically opposite (antagonistic) resonance components, R-S[double bond, length as m-dash]N-O (D) and R-S/NO (I), which are, in addition to the main resonance structure R-S-N[double bond, length as m-dash]O, necessary to describe the unusual electronic structure of RSNOs. σ-Hole binding at the sulfur atom of RSNO promotes the resonance structure D and reduces the resonance structure I, thereby stabilizing the weak N-S bond and making the sulfur atom more electrophilic. On the other hand, increasing the D-character of RSNO by other means (e.g. via N- or O-coordination of a Lewis acid) in turn enhances the σ-hole bonding. Our calculations suggest that in the protein environment a combination of σ-hole bonding of a negatively charged amino acid sidechain at the sulfur atom and N- or O-coordination of a positively charged amino acid sidechain is expected to have a profound effect on the RSNO electronic structure and reactivity.

摘要

S-亚硝基硫醇(RSNOs)是普遍存在的生物分子,其化学性质在体内受到严格控制,尽管这种生物学控制的具体分子机制尚不清楚。在这项工作中,我们使用高水平的从头算和 DFT 计算证明了 RSNOs 通过 σ-空穴与电子对供体/Lewis 碱(LB)参与分子间相互作用的能力,σ-空穴是 N-S 键延伸处分子表面上正静电势区域。重要的是,σ-空穴结合能够通过改变两种化学相反(拮抗)共振成分 R-S[双键,长度为 m-dash]N-O(D)和 R-S/NO(I)之间的平衡来调节 RSNOs 的性质,这两种成分除了主要共振结构 R-S-N[双键,长度为 m-dash]O 外,还需要描述 RSNOs 的异常电子结构。RSNOs 硫原子上的 σ-空穴结合促进了共振结构 D 的形成,并减少了共振结构 I 的形成,从而稳定了较弱的 N-S 键并使硫原子更具亲电性。另一方面,通过其他手段(例如路易斯酸的 N-或 O-配位)增加 RSNO 的 D-特征,反过来又增强了 σ-空穴键合。我们的计算表明,在蛋白质环境中,带负电荷的氨基酸侧链在硫原子上的 σ-空穴键合和带正电荷的氨基酸侧链的 N-或 O-配位的组合预计会对 RSNO 电子结构和反应性产生深远影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验