Regeneron Ireland DAC, Raheen Business Park, Limerick, Ireland.
Thermo Fisher Scientific Inc., Logan, Utah.
Biotechnol Bioeng. 2020 Jun;117(6):1710-1723. doi: 10.1002/bit.27323. Epub 2020 Apr 6.
The timely delivery of the most up-to-date medicines and drug products is essential for patients throughout the world. Successful scaling of the bioreactors used within the biopharmaceutical industry plays a large part in the quality and time to market of these products. Scale and topology differences between vessels add a large degree of complication and uncertainty within the scaling process. Currently, this approach is primarily achieved through extensive experimentation and facile empirical correlations, which can be costly and time consuming while providing limited information. The work undertaken in the current study demonstrates a more robust and complete approach using computational fluid dynamics (CFD) to provide potent multiparameter scalability, which only requires geometric and material properties before a comprehensive and detailed solution can be generated. The CFD model output parameters that can be applied in the scale-up include mass transfer rates, mixing times, shear rates, gas hold-up values, and bubble residence times. The authors examined three bioreactors with variable geometries and were able to validate them based on single-phase and multiphase experiments. Furthermore, leveraging the resulting CFD output information enabled the authors to successfully scale-up from a known 2kL to a novel and disparate 5kL single-use bioreactor in the first attempted cell culture. This multiparameter scaling approach promises to ultimately lead to a reduction in the time to market providing patients with earlier access to the most groundbreaking medicines.
为全球各地的患者及时提供最新的药品和药物产品至关重要。在生物制药行业中,成功放大生物反应器在这些产品的质量和上市时间方面起着重要作用。容器之间的规模和拓扑差异在缩放过程中增加了很大的复杂性和不确定性。目前,主要通过广泛的实验和简单的经验相关性来实现这种方法,这可能既昂贵又耗时,同时提供的信息有限。当前研究中的工作展示了一种更强大和完整的方法,使用计算流体动力学 (CFD) 提供强大的多参数可扩展性,只需在生成全面详细的解决方案之前提供几何形状和材料特性。可应用于放大的 CFD 模型输出参数包括传质速率、混合时间、剪切速率、气体持液量和气泡停留时间。作者研究了三种具有不同几何形状的生物反应器,并能够根据单相和多相实验对其进行验证。此外,利用所得 CFD 输出信息,作者成功地从已知的 2kL 放大到首个尝试的细胞培养中的新型独特的一次性使用 5kL 生物反应器。这种多参数缩放方法有望最终缩短上市时间,使患者更早地获得最具开创性的药物。