Division of Geriatric Medicine, Department of Medicine.
Department of Environmental and Occupational Health.
Toxicol Sci. 2020 Jul 1;176(1):162-174. doi: 10.1093/toxsci/kfaa031.
Arsenic exposure impairs muscle metabolism, maintenance, progenitor cell differentiation, and regeneration following acute injury. Low to moderate arsenic exposures target muscle fiber and progenitor cell mitochondria to epigenetically decrease muscle quality and regeneration. However, the mechanisms for how low levels of arsenic signal for prolonged mitochondrial dysfunction are not known. In this study, arsenic attenuated murine C2C12 myoblasts differentiation and resulted in abnormal undifferentiated myoblast proliferation. Arsenic prolonged ligand-independent phosphorylation of mitochondrially localized epidermal growth factor receptor (EGFR), a major driver of proliferation. Treating cells with a selective EGFR kinase inhibitor, AG-1478, prevented arsenic inhibition of myoblast differentiation. AG-1478 decreased arsenic-induced colocalization of pY845EGFR with mitochondrial cytochrome C oxidase subunit II, as well as arsenic-enhanced mitochondrial membrane potential, reactive oxygen species generation, and cell cycling. All of the arsenic effects on mitochondrial signaling and cell fate were mitigated or reversed by addition of mitochondrially targeted agents that restored mitochondrial integrity and function. Thus, arsenic-driven pathogenesis in skeletal muscle requires sustained mitochondrial EGFR activation that promotes progenitor cell cycling and proliferation at the detriment of proper differentiation. Collectively, these findings suggest that the arsenic-activated mitochondrial EGFR pathway drives pathogenic signaling for impaired myoblast metabolism and function.
砷暴露会损害肌肉代谢、维持、祖细胞分化以及急性损伤后的再生。低至中等水平的砷暴露会靶向肌肉纤维和祖细胞的线粒体,通过表观遗传降低肌肉质量和再生。然而,低水平砷信号如何引发长期线粒体功能障碍的机制尚不清楚。在这项研究中,砷抑制了 C2C12 成肌细胞的分化,并导致未分化的成肌细胞异常增殖。砷延长了位于线粒体的表皮生长因子受体 (EGFR) 的配体非依赖性磷酸化,这是增殖的主要驱动因素。用选择性 EGFR 激酶抑制剂 AG-1478 处理细胞可防止砷抑制成肌细胞分化。AG-1478 减少了砷诱导的 pY845EGFR 与线粒体细胞色素 C 氧化酶亚基 II 的共定位,以及砷增强的线粒体膜电位、活性氧生成和细胞周期。线粒体靶向药物可减轻或逆转砷对线粒体信号和细胞命运的所有影响,这些药物恢复了线粒体的完整性和功能。因此,砷驱动的骨骼肌发病机制需要持续的线粒体 EGFR 激活,这促进了祖细胞的细胞周期和增殖,而损害了适当的分化。总之,这些发现表明,砷激活的线粒体 EGFR 途径驱动了成肌细胞代谢和功能受损的致病信号。