Wang Enliang, Shan Xu, Chen Lei, Pfeifer Thomas, Chen Xiangjun, Ren Xueguang, Dorn Alexander
Max Planck Institut für Kernphysik, Saupfercheckweg, 1, 69117 Heidelberg, Germany.
Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
J Phys Chem A. 2020 Apr 9;124(14):2785-2791. doi: 10.1021/acs.jpca.0c02074. Epub 2020 Mar 27.
If a molecular dication is produced on a repulsive potential energy surface (PES), it normally dissociates. Before that, however, ultrafast nuclear dynamics can change the PES and significantly influence the fragmentation pathway. Here, we investigate the electron-impact-induced double ionization and subsequent fragmentation processes of the ethanol molecule using multiparticle coincident momentum spectroscopy and ab initio dynamical simulations. For the electronic ground state of the ethanol dication, we observe several fragmentation channels that cannot be reached by direct Coulomb explosion (CE) but require preceding isomerization. Our simulations show that ultrafast hydrogen or proton transfer (PT) can stabilize the repulsive PES of the dication before the direct CE and form intermediate H or HO. These neutrals stay in the vicinity of the precursor, and roaming mechanisms lead to isomerization and finally PT resulting in emission of H or HO. The present findings can help to understand the complex fragmentation dynamics of molecular cations.
如果在排斥性势能面(PES)上产生分子双阳离子,它通常会解离。然而,在此之前,超快核动力学可以改变PES并显著影响碎片化途径。在这里,我们使用多粒子符合动量光谱和从头算动力学模拟研究乙醇分子的电子碰撞诱导双电离及随后的碎片化过程。对于乙醇双阳离子的电子基态,我们观察到几个直接库仑爆炸(CE)无法达到但需要先异构化的碎片化通道。我们的模拟表明,超快氢或质子转移(PT)可以在直接CE之前稳定双阳离子的排斥性PES并形成中间体H或HO。这些中性粒子停留在前体附近,漫游机制导致异构化并最终发生PT,从而导致H或HO的发射。目前的研究结果有助于理解分子阳离子复杂的碎片化动力学。