Severt Travis, Weckwerth Eleanor, Kaderiya Balram, Feizollah Peyman, Jochim Bethany, Borne Kurtis, Ziaee Farzaneh, P Kanaka Raju, Carnes Kevin D, Dantus Marcos, Rolles Daniel, Rudenko Artem, Wells Eric, Ben-Itzhak Itzik
J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA.
Department of Physics, Augustana University, Sioux Falls, SD, 57108, USA.
Nat Commun. 2024 Jan 2;15(1):74. doi: 10.1038/s41467-023-44311-x.
An essential problem in photochemistry is understanding the coupling of electronic and nuclear dynamics in molecules, which manifests in processes such as hydrogen migration. Measurements of hydrogen migration in molecules that have more than two equivalent hydrogen sites, however, produce data that is difficult to compare with calculations because the initial hydrogen site is unknown. We demonstrate that coincidence ion-imaging measurements of a few deuterium-tagged isotopologues of ethanol can determine the contribution of each initial-site composition to hydrogen-rich fragments following strong-field double ionization. These site-specific probabilities produce benchmarks for calculations and answer outstanding questions about photofragmentation of ethanol dications; e.g., establishing that the central two hydrogen atoms are 15 times more likely to abstract the hydroxyl proton than a methyl-group proton to form H[Formula: see text] and that hydrogen scrambling, involving the exchange of hydrogen between different sites, is important in HO formation. The technique extends to dynamic variables and could, in principle, be applied to larger non-cyclic hydrocarbons.
光化学中的一个基本问题是理解分子中电子动力学与核动力学的耦合,这在诸如氢迁移等过程中表现出来。然而,对于具有两个以上等效氢位点的分子进行氢迁移测量时,由于初始氢位点未知,所产生的数据难以与计算结果进行比较。我们证明,对几种氘标记的乙醇同位素分子进行符合离子成像测量,可以确定在强场双电离后,每种初始位点组成对富含氢碎片的贡献。这些位点特异性概率为计算提供了基准,并回答了有关乙醇双阳离子光解离的悬而未决的问题;例如,确定中心的两个氢原子夺取羟基质子形成H[公式:见正文]的可能性是夺取甲基质子的15倍,并且涉及不同位点之间氢交换的氢重排对于HO形成很重要。该技术可扩展到动态变量,原则上可应用于更大的非环状烃类。