Bittner Dror M, Gope Krishnendu, Livshits Ester, Baer Roi, Strasser Daniel
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
J Chem Phys. 2022 Aug 21;157(7):074309. doi: 10.1063/5.0098531.
We study the competing mechanisms involved in the Coulomb explosion of 2-propanol CH CHOH dication, formed by an ultrafast extreme ultraviolet pulse. Over 20 product channels are identified and characterized using 3D coincidence imaging of the ionic fragments. The momentum correlations in the three-body fragmentation channels provide evidence for a dominant sequential mechanism, starting with the cleavage of a C-C bond, ejecting CH and CHCHOH cations, followed by a secondary fragmentation of the hydroxyethyl cation that can be delayed for up to a microsecond after ionization. The C-O bond dissociation channels are less frequent, involving proton transfer and double proton transfer, forming HO and HO products, respectively, and exhibiting mixed sequential and concerted character. These results can be explained by the high potential barrier for the C-O bond dissociation seen in our ab initio quantum chemical calculations. We also observe coincident COH + CH ions, suggesting exotic structural rearrangements, starting from the Frank-Condon geometry of the neutral 2-propanol system. Remarkably, the relative yield of the H product is suppressed compared with methanol and alkene dications. Ab initio potentials and ground state molecular dynamics simulations show that a rapid and direct C-C bond cleavage dominates the Coulomb explosion process, leaving no time for H roaming, which is a necessary precursor to the H formation.
我们研究了由超快极紫外脉冲形成的2-丙醇CH₃CHOH²⁺库仑爆炸中涉及的竞争机制。使用离子碎片的三维符合成像识别并表征了20多个产物通道。三体碎裂通道中的动量相关性为一种主要的相继机制提供了证据,该机制始于C-C键的断裂,弹出CH₃⁺和CH₂CHOH⁺阳离子,随后羟乙基阳离子发生二次碎裂,这一过程在电离后可能会延迟长达一微秒。C-O键解离通道的频率较低,涉及质子转移和双质子转移,分别形成H₂O⁺和H₂O₂⁺产物,并表现出相继和协同的混合特征。这些结果可以通过我们从头算量子化学计算中看到的C-O键解离的高势垒来解释。我们还观察到了同时出现的COH⁺ + CH₃⁺离子,这表明从中性2-丙醇体系的弗兰克-康登几何结构开始发生了奇特的结构重排。值得注意的是,与甲醇和烯烃二价阳离子相比,H₂产物的相对产率受到了抑制。从头算势能和基态分子动力学模拟表明,快速直接的C-C键断裂主导了库仑爆炸过程,没有给H漫游留下时间,而H漫游是H₂形成的必要前提。