Suppr超能文献

变异解读指南及其在计算工具中的实施存在的问题。

Problems in variation interpretation guidelines and in their implementation in computational tools.

作者信息

Vihinen Mauno

机构信息

Department of Experimental Medical Science, Lund University, Lund, Sweden.

出版信息

Mol Genet Genomic Med. 2020 Sep;8(9):e1206. doi: 10.1002/mgg3.1206. Epub 2020 Mar 11.

Abstract

BACKGROUND

ACMG/AMP and AMP/ASCO/CAP have released guidelines for variation interpretation, and ESHG for diagnostic sequencing. These guidelines contain recommendations including the use of computational prediction methods. The guidelines per se and the way they are implemented cause some problems.

METHODS

Logical reasoning based on domain knowledge.

RESULTS

According to the guidelines, several methods have to be used and they have to agree. This means that the methods with the poorest performance overrule the better ones. The choice of the prediction method(s) should be made by experts  based on systematic benchmarking studies reporting all the relevant performance measures. Currently variation interpretation methods have been applied mainly to amino acid substitutions and splice site variants; however, predictors for some other types of variations are available and there will be tools for new application areas in the near future. Common problems in prediction method usage are discussed. The number of features used for method training or the number of variation types predicted by a tool are not indicators of method performance. Many published gene, protein or disease-specific benchmark studies suffer from too small dataset rendering the results useless. In the case of binary predictors, equal number of positive and negative cases is beneficial for training, the imbalance has to be corrected for performance assessment. Predictors cannot be better than the data they are based on and used for training and testing. Minor allele frequency (MAF) can help to detect likely benign cases, but the recommended MAF threshold is apparently too high. The fact that many rare variants are disease-causing or -related does not mean that rare variants in general would be harmful. How large a portion of the tested variants a tool can predict (coverage) is not a quality measure.

CONCLUSION

Methods used for variation interpretation have to be carefully selected. It should be possible to use only one predictor, with proven good performance or a limited number of complementary predictors with state-of-the-art performance. Bear in mind that diseases and pathogenicity have a continuum and variants are not dichotomic i.e. either pathogenic or benign, either.

摘要

背景

美国医学遗传学与基因组学学会/美国分子病理学会(ACMG/AMP)以及美国分子病理学会/美国临床肿瘤学会/美国病理家学会(AMP/ASCO/CAP)发布了变异解读指南,欧洲人类遗传学学会(ESHG)发布了诊断性测序指南。这些指南包含了一些建议,包括使用计算预测方法。指南本身及其实施方式引发了一些问题。

方法

基于领域知识的逻辑推理。

结果

根据指南,必须使用多种方法且这些方法必须达成一致。这意味着性能最差的方法会否决性能更好的方法。预测方法的选择应由专家根据报告所有相关性能指标的系统基准研究来做出。目前,变异解读方法主要应用于氨基酸替换和剪接位点变异;然而,也有针对其他一些类型变异的预测工具,并且在不久的将来还会有适用于新应用领域的工具。文中讨论了预测方法使用中的常见问题。用于方法训练的特征数量或工具预测的变异类型数量并非方法性能的指标。许多已发表的基因、蛋白质或疾病特异性基准研究因数据集过小而导致结果无用。对于二元预测器而言,训练时正负病例数量相等有益,进行性能评估时必须校正不平衡情况。预测器的性能不可能优于其训练和测试所基于的数据。次要等位基因频率(MAF)有助于检测可能为良性的病例,但推荐的MAF阈值显然过高。许多罕见变异是致病的或与疾病相关这一事实并不意味着一般情况下罕见变异都是有害的。工具能够预测的测试变异的比例(覆盖率)并非质量指标。

结论

必须谨慎选择用于变异解读的方法。应该可以仅使用一种经证实性能良好的预测器,或者使用数量有限的具有先进性能的互补预测器。请记住,疾病和致病性具有连续性,变异并非二分的,即不是要么致病要么良性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b0/7507483/53723ac617fb/MGG3-8-e1206-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验