Suppr超能文献

成胶质细胞瘤细胞对 EGFR 和 MET 抑制的抗性可以通过阻断 FGFR-SPRY2 旁路信号来克服。

Glioblastoma Cell Resistance to EGFR and MET Inhibition Can Be Overcome via Blockade of FGFR-SPRY2 Bypass Signaling.

机构信息

Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA.

出版信息

Cell Rep. 2020 Mar 10;30(10):3383-3396.e7. doi: 10.1016/j.celrep.2020.02.014.

Abstract

SPRY2 is a purported tumor suppressor in certain cancers that promotes tumor growth and resistance to receptor tyrosine kinase inhibitors in glioblastoma. Here, we identify a SPRY2-dependent bypass signaling mechanism in glioblastoma that drives resistance to EGFR and MET inhibition. In glioblastoma cells treated with EGFR and MET inhibitors, SPRY2 expression is initially suppressed but eventually rebounds due to NF-κB pathway activation, resultant autocrine FGFR activation, and reactivation of ERK, which controls SPRY2 transcription. In cells where FGFR autocrine signaling does not occur and ERK does not reactivate, or in which ERK reactivates but SPRY2 cannot be expressed, EGFR and MET inhibitors are more effective at promoting death. The same mechanism also drives acquired resistance to EGFR and MET inhibition. Furthermore, tumor xenografts expressing an ERK-dependent bioluminescent reporter engineered for these studies reveal that this bypass resistance mechanism plays out in vivo but can be overcome through simultaneous FGFR inhibition.

摘要

SPRY2 是某些癌症中的假定肿瘤抑制因子,它促进神经胶质瘤中的肿瘤生长和对受体酪氨酸激酶抑制剂的耐药性。在这里,我们确定了神经胶质瘤中一种依赖 SPRY2 的旁路信号机制,该机制导致对 EGFR 和 MET 抑制的耐药性。在接受 EGFR 和 MET 抑制剂治疗的神经胶质瘤细胞中,SPRY2 的表达最初受到抑制,但由于 NF-κB 途径的激活、随后的 FGFR 自分泌激活以及 ERK 的重新激活,导致 SPRY2 转录的重新激活,SPRY2 的表达最终反弹。在 FGFR 自分泌信号不发生且 ERK 不会重新激活的细胞中,或者在 ERK 重新激活但 SPRY2 无法表达的细胞中,EGFR 和 MET 抑制剂更有效地促进细胞死亡。同样的机制也导致了对 EGFR 和 MET 抑制的获得性耐药性。此外,表达了为此项研究设计的依赖于 ERK 的生物发光报告基因的肿瘤异种移植物揭示了这种旁路耐药机制在体内发挥作用,但通过同时抑制 FGFR 可以克服这种耐药性。

相似文献

1
3
Sprouty2 Drives Drug Resistance and Proliferation in Glioblastoma.
Mol Cancer Res. 2015 Aug;13(8):1227-37. doi: 10.1158/1541-7786.MCR-14-0183-T. Epub 2015 May 1.
4
Regulation of EGFR trafficking and cell signaling by Sprouty2 and MIG6 in lung cancer cells.
J Cell Sci. 2013 Oct 1;126(Pt 19):4339-48. doi: 10.1242/jcs.123208. Epub 2013 Jul 18.
5
Sprouty2 enhances the tumorigenic potential of glioblastoma cells.
Neuro Oncol. 2018 Jul 5;20(8):1044-1054. doi: 10.1093/neuonc/noy028.
9
Discovery and Therapeutic Exploitation of Mechanisms of Resistance to MET Inhibitors in Glioblastoma.
Clin Cancer Res. 2019 Jan 15;25(2):663-673. doi: 10.1158/1078-0432.CCR-18-0926. Epub 2018 Sep 10.
10
EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3855-63. doi: 10.1073/pnas.1510733112. Epub 2015 Jul 6.

引用本文的文献

1
Kinase-Targeted Therapies for Glioblastoma.
Int J Mol Sci. 2025 Apr 15;26(8):3737. doi: 10.3390/ijms26083737.
3
The role of Foxo3a in neuron-mediated cognitive impairment.
Front Mol Neurosci. 2024 Jun 19;17:1424561. doi: 10.3389/fnmol.2024.1424561. eCollection 2024.
4
FOSL1's Oncogene Roles in Glioma/Glioma Stem Cells and Tumorigenesis: A Comprehensive Review.
Int J Mol Sci. 2024 May 14;25(10):5362. doi: 10.3390/ijms25105362.
5
Targeted Glioma Therapy-Clinical Trials and Future Directions.
Pharmaceutics. 2024 Jan 11;16(1):100. doi: 10.3390/pharmaceutics16010100.
6
Glioma Stem Cells Are Sensitized to BCL-2 Family Inhibition by Compromising Histone Deacetylases.
Int J Mol Sci. 2023 Sep 5;24(18):13688. doi: 10.3390/ijms241813688.
7
Recurrent Glioblastoma: A Review of the Treatment Options.
Cancers (Basel). 2023 Aug 26;15(17):4279. doi: 10.3390/cancers15174279.
8
Suppression of sonic hedgehog pathway-based proliferation in glioblastoma cells by small-size silver nanoparticles in vitro.
Arch Toxicol. 2023 Sep;97(9):2385-2398. doi: 10.1007/s00204-023-03552-x. Epub 2023 Jul 5.
10
Probabilistic edge inference of gene networks with markov random field-based bayesian learning.
Front Genet. 2022 Nov 10;13:1034946. doi: 10.3389/fgene.2022.1034946. eCollection 2022.

本文引用的文献

2
Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the Novel Selective ERK1/2 Inhibitor BVD-523 (Ulixertinib).
Mol Cancer Ther. 2017 Nov;16(11):2351-2363. doi: 10.1158/1535-7163.MCT-17-0456. Epub 2017 Sep 22.
4
Glioblastoma cellular cross-talk converges on NF-κB to attenuate EGFR inhibitor sensitivity.
Genes Dev. 2017 Jun 15;31(12):1212-1227. doi: 10.1101/gad.300079.117. Epub 2017 Jul 19.
6
Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance.
Nature. 2017 Jun 15;546(7658):431-435. doi: 10.1038/nature22794. Epub 2017 Jun 7.
7
Small Molecule Kinase Inhibitors for the Treatment of Brain Cancer.
J Med Chem. 2016 Nov 23;59(22):10030-10066. doi: 10.1021/acs.jmedchem.6b00618. Epub 2016 Aug 3.
8
The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches.
Cell Rep. 2016 Jun 14;15(11):2500-9. doi: 10.1016/j.celrep.2016.05.018. Epub 2016 Jun 2.
9
Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier.
Neuro Oncol. 2016 Jun;18(6):840-8. doi: 10.1093/neuonc/nov299. Epub 2015 Dec 17.
10
InsR/IGF1R Pathway Mediates Resistance to EGFR Inhibitors in Glioblastoma.
Clin Cancer Res. 2016 Apr 1;22(7):1767-76. doi: 10.1158/1078-0432.CCR-15-1677. Epub 2015 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验