Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia.
University Mohammed 6 for Health Sciences, Casablanca, Morocco.
Clin Cancer Res. 2019 Jan 15;25(2):663-673. doi: 10.1158/1078-0432.CCR-18-0926. Epub 2018 Sep 10.
Glioblastoma (GBM) is the most common and most lethal primary malignant brain tumor. The receptor tyrosine kinase MET is frequently upregulated or overactivated in GBM. Although clinically applicable MET inhibitors have been developed, resistance to single modality anti-MET drugs frequently occurs, rendering these agents ineffective. We aimed to determine the mechanisms of MET inhibitor resistance in GBM and use the acquired information to develop novel therapeutic approaches to overcome resistance. We investigated two clinically applicable MET inhibitors: crizotinib, an ATP-competitive small molecule inhibitor of MET, and onartuzumab, a monovalent monoclonal antibody that binds to the extracellular domain of the MET receptor. We developed new MET inhibitor-resistant cells lines and animal models and used reverse phase protein arrays (RPPA) and functional assays to uncover the compensatory pathways in MET inhibitor-resistant GBM.
We identified critical proteins that were altered in MET inhibitor-resistant GBM including mTOR, FGFR1, EGFR, STAT3, and COX-2. Simultaneous inhibition of MET and one of these upregulated proteins led to increased cell death and inhibition of cell proliferation in resistant cells compared with either agent alone. In addition, treatment of mice bearing MET-resistant orthotopic xenografts with COX-2 or FGFR pharmacological inhibitors in combination with MET inhibitor restored sensitivity to MET inhibition and significantly inhibited tumor growth.
These data uncover the molecular basis of adaptive resistance to MET inhibitors and identify new FDA-approved multidrug therapeutic combinations that can overcome resistance.
胶质母细胞瘤(GBM)是最常见和最致命的原发性恶性脑肿瘤。受体酪氨酸激酶 MET 在 GBM 中经常过表达或过度激活。尽管已经开发出了临床上适用的 MET 抑制剂,但对单一模式抗-MET 药物的耐药性经常发生,使这些药物无效。我们旨在确定 GBM 中 MET 抑制剂耐药的机制,并利用所获得的信息开发新的治疗方法来克服耐药性。我们研究了两种临床上适用的 MET 抑制剂:克唑替尼,一种 MET 的 ATP 竞争性小分子抑制剂,和奥加妥珠单抗,一种结合 MET 受体细胞外结构域的单价单克隆抗体。我们开发了新的 MET 抑制剂耐药细胞系和动物模型,并使用反向蛋白质阵列(RPPA)和功能测定来揭示 MET 抑制剂耐药性 GBM 中的补偿途径。
我们确定了在 MET 抑制剂耐药性 GBM 中改变的关键蛋白,包括 mTOR、FGFR1、EGFR、STAT3 和 COX-2。与单独使用任一药物相比,同时抑制 MET 和这些上调蛋白之一可导致耐药细胞中的细胞死亡增加和细胞增殖抑制。此外,用 COX-2 或 FGFR 药理抑制剂联合 MET 抑制剂治疗携带 MET 耐药性原位异种移植的小鼠恢复了对 MET 抑制的敏感性,并显著抑制了肿瘤生长。
这些数据揭示了对 MET 抑制剂的适应性耐药的分子基础,并确定了新的经 FDA 批准的多药治疗组合,可以克服耐药性。