Zhang Xinru, Yuan Hao, Wang Yi, Guan Libo, Zeng Ziyi, Jiang Zeyi, Zhang Xinxin
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing 100083, China.
Langmuir. 2020 Mar 31;36(12):3057-3063. doi: 10.1021/acs.langmuir.0c00274. Epub 2020 Mar 20.
Microalgae biofilm-based culture systems have wide applications in environmental engineering and biotechnology. Biofilm structure is critical for the transport of nutrients, gas, and signaling molecules in a microalgal biofilm. This work aims to understand the influence of cell surface energy (SE) on the microalgal biofilm structure. Three microalgae species were used as model cells in the study: sp., , and . First, by mediating biofilm culture conditions, we obtained sp. cells with SEs of 40.4 ± 1.5, 44.7 ± 1.0, and 62. 7 ± 1.2 mJ/m, cells with SEs of 47.7 ± 0.5, 41.1 ± 1.0, and 62.6 ± 1.2 mJ/m, and cells with SEs of 64.0 ± 0.6, 62.1 ± 0.7, and 62.8 ± 0.6 mJ/m. Then, based on the characterizations of biofilm structures, we found that cell SE can significantly affect the microalgae biofilm structure. When the cell SEs ranged from 40 to 50 mJ/m, the microalgae cells formed heterogeneous biofilms with a large number of open voids, and the biofilm porosity was higher than 20%. Alternatively, when the cell SEs ranged from 50 to 65 mJ/m, the cells formed a flat, homogeneous biofilm with the porosity lower than 20%. Finally, the influencing mechanism of cell SE on biofilm structure was interpreted based on the thermodynamic theory via analyzing the co-adhesion energy between cells. The study has important implications in understanding factors that influence the biofilm structures.
基于微藻生物膜的培养系统在环境工程和生物技术领域有着广泛应用。生物膜结构对于微藻生物膜中营养物质、气体和信号分子的传输至关重要。本研究旨在了解细胞表面能(SE)对微藻生物膜结构的影响。研究中使用了三种微藻作为模型细胞: 属的 种、 种和 种。首先,通过调节生物膜培养条件,我们获得了表面能分别为40.4±1.5、44.7±1.0和62.7±1.2 mJ/m²的 种细胞,表面能分别为47.7±0.5、41.1±1.0和62.6±1.2 mJ/m²的 种细胞,以及表面能分别为64.0±0.6、62.1±0.7和62.8±0.6 mJ/m²的 种细胞。然后,基于对生物膜结构的表征,我们发现细胞表面能会显著影响微藻生物膜结构。当细胞表面能在40至50 mJ/m²范围内时,微藻细胞形成具有大量开放孔隙的异质生物膜,生物膜孔隙率高于20%。相反,当细胞表面能在50至65 mJ/m²范围内时,细胞形成平坦、均匀的生物膜,孔隙率低于20%。最后,通过分析细胞间的共粘附能,基于热力学理论解释了细胞表面能对生物膜结构的影响机制。该研究对于理解影响生物膜结构的因素具有重要意义。