Division of Critical Care Medicine, Department of Pediatrics, Lucile Packard Children's Hospital (T.J.L.), Stanford University School of Medicine, CA.
Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA.
Circ Heart Fail. 2020 Mar;13(3):e006298. doi: 10.1161/CIRCHEARTFAILURE.119.006298. Epub 2020 Mar 12.
MicroRNAs are small, noncoding RNAs that play a key role in gene expression. Accumulating evidence suggests that aberrant microRNA expression contributes to the heart failure (HF) phenotype; however, the underlying molecular mechanisms are not well understood. A better understanding of the mechanisms of action of microRNAs could potentially lead to targeted therapies that could halt the progression or even reverse HF.
We found that microRNA-152 (miR-152) expression was upregulated in the failing human heart and experimental animal models of HF. Transgenic mice with cardiomyocyte-specific miR-152 overexpression developed systolic dysfunction (mean difference, -38.74% [95% CI, -45.73% to -31.74%]; <0.001) and dilated cardiomyopathy. At the cellular level, miR-152 overexpression perturbed mitochondrial ultrastructure and dysregulated key genes involved in cardiomyocyte metabolism and inflammation. Mechanistically, we identified Glrx5 (glutaredoxin 5), a critical regulator of mitochondrial iron homeostasis and iron-sulfur cluster synthesis, as a direct miR-152 target. Finally, a proof-of-concept of the therapeutic efficacy of targeting miR-152 in vivo was obtained by utilizing a locked nucleic acid-based inhibitor of miR-152 (LNA 152) in a murine model of HF subjected to transverse aortic constriction. We demonstrated that animals treated with LNA-152 (n=10) showed preservation of systolic function when compared with locked nucleic acid-control treated animals (n=9; mean difference, 18.25% [95% CI, 25.10% to 11.39%]; <0.001).
The upregulation of miR-152 expression in the failing myocardium contributes to HF pathophysiology. Preclinical evidence suggests that miR-152 inhibition preserves cardiac function in a model of pressure overload-induced HF. These findings offer new insights into the pathophysiology of HF and point to miR-152-Glrx5 axis as a potential novel therapeutic target.
微小 RNA 是一种小的非编码 RNA,在基因表达中起着关键作用。越来越多的证据表明,异常的微小 RNA 表达导致心力衰竭 (HF) 表型;然而,潜在的分子机制尚不清楚。更好地了解微小 RNA 的作用机制可能会导致针对特定靶点的治疗方法,从而阻止 HF 的进展,甚至逆转 HF。
我们发现微小 RNA-152 (miR-152) 在衰竭的人心和 HF 的实验动物模型中的表达上调。具有心肌细胞特异性 miR-152 过表达的转基因小鼠发生收缩功能障碍(平均差异,-38.74%[95%置信区间,-45.73%至-31.74%];<0.001)和扩张型心肌病。在细胞水平上,miR-152 过表达扰乱了线粒体超微结构,并使涉及心肌细胞代谢和炎症的关键基因失调。从机制上讲,我们确定 Glrx5(谷氧还蛋白 5),一种关键的线粒体铁稳态和铁硫簇合成调节剂,是 miR-152 的直接靶点。最后,通过利用 miR-152 的锁定核酸抑制剂(LNA 152)在经受横主动脉缩窄的 HF 小鼠模型中进行体内靶向 miR-152 的治疗效果的概念验证,获得了针对 miR-152 的体内治疗效果。我们证明,与接受锁定核酸对照治疗的动物(n=9)相比,接受 LNA-152 治疗的动物(n=10)的收缩功能得到了保留(平均差异,18.25%[95%置信区间,25.10%至 11.39%];<0.001)。
衰竭心肌中 miR-152 表达的上调导致 HF 病理生理学的发生。临床前证据表明,miR-152 抑制在压力超负荷诱导的 HF 模型中保留心脏功能。这些发现为 HF 的病理生理学提供了新的见解,并指出 miR-152-Glrx5 轴可能是一个潜在的新的治疗靶点。