Suppr超能文献

药理学沉默 microRNA-152 可预防压力超负荷诱导的心力衰竭。

Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload-Induced Heart Failure.

机构信息

Division of Critical Care Medicine, Department of Pediatrics, Lucile Packard Children's Hospital (T.J.L.), Stanford University School of Medicine, CA.

Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA.

出版信息

Circ Heart Fail. 2020 Mar;13(3):e006298. doi: 10.1161/CIRCHEARTFAILURE.119.006298. Epub 2020 Mar 12.

Abstract

BACKGROUND

MicroRNAs are small, noncoding RNAs that play a key role in gene expression. Accumulating evidence suggests that aberrant microRNA expression contributes to the heart failure (HF) phenotype; however, the underlying molecular mechanisms are not well understood. A better understanding of the mechanisms of action of microRNAs could potentially lead to targeted therapies that could halt the progression or even reverse HF.

METHODS AND RESULTS

We found that microRNA-152 (miR-152) expression was upregulated in the failing human heart and experimental animal models of HF. Transgenic mice with cardiomyocyte-specific miR-152 overexpression developed systolic dysfunction (mean difference, -38.74% [95% CI, -45.73% to -31.74%]; <0.001) and dilated cardiomyopathy. At the cellular level, miR-152 overexpression perturbed mitochondrial ultrastructure and dysregulated key genes involved in cardiomyocyte metabolism and inflammation. Mechanistically, we identified Glrx5 (glutaredoxin 5), a critical regulator of mitochondrial iron homeostasis and iron-sulfur cluster synthesis, as a direct miR-152 target. Finally, a proof-of-concept of the therapeutic efficacy of targeting miR-152 in vivo was obtained by utilizing a locked nucleic acid-based inhibitor of miR-152 (LNA 152) in a murine model of HF subjected to transverse aortic constriction. We demonstrated that animals treated with LNA-152 (n=10) showed preservation of systolic function when compared with locked nucleic acid-control treated animals (n=9; mean difference, 18.25% [95% CI, 25.10% to 11.39%]; <0.001).

CONCLUSIONS

The upregulation of miR-152 expression in the failing myocardium contributes to HF pathophysiology. Preclinical evidence suggests that miR-152 inhibition preserves cardiac function in a model of pressure overload-induced HF. These findings offer new insights into the pathophysiology of HF and point to miR-152-Glrx5 axis as a potential novel therapeutic target.

摘要

背景

微小 RNA 是一种小的非编码 RNA,在基因表达中起着关键作用。越来越多的证据表明,异常的微小 RNA 表达导致心力衰竭 (HF) 表型;然而,潜在的分子机制尚不清楚。更好地了解微小 RNA 的作用机制可能会导致针对特定靶点的治疗方法,从而阻止 HF 的进展,甚至逆转 HF。

方法和结果

我们发现微小 RNA-152 (miR-152) 在衰竭的人心和 HF 的实验动物模型中的表达上调。具有心肌细胞特异性 miR-152 过表达的转基因小鼠发生收缩功能障碍(平均差异,-38.74%[95%置信区间,-45.73%至-31.74%];<0.001)和扩张型心肌病。在细胞水平上,miR-152 过表达扰乱了线粒体超微结构,并使涉及心肌细胞代谢和炎症的关键基因失调。从机制上讲,我们确定 Glrx5(谷氧还蛋白 5),一种关键的线粒体铁稳态和铁硫簇合成调节剂,是 miR-152 的直接靶点。最后,通过利用 miR-152 的锁定核酸抑制剂(LNA 152)在经受横主动脉缩窄的 HF 小鼠模型中进行体内靶向 miR-152 的治疗效果的概念验证,获得了针对 miR-152 的体内治疗效果。我们证明,与接受锁定核酸对照治疗的动物(n=9)相比,接受 LNA-152 治疗的动物(n=10)的收缩功能得到了保留(平均差异,18.25%[95%置信区间,25.10%至 11.39%];<0.001)。

结论

衰竭心肌中 miR-152 表达的上调导致 HF 病理生理学的发生。临床前证据表明,miR-152 抑制在压力超负荷诱导的 HF 模型中保留心脏功能。这些发现为 HF 的病理生理学提供了新的见解,并指出 miR-152-Glrx5 轴可能是一个潜在的新的治疗靶点。

相似文献

引用本文的文献

6
Regulated necrosis pathways: a potential target for ischemic stroke.程序性坏死途径:缺血性中风的潜在靶点。
Burns Trauma. 2023 Nov 18;11:tkad016. doi: 10.1093/burnst/tkad016. eCollection 2023.

本文引用的文献

3
RNA Therapeutics in Cardiovascular Disease.心血管疾病的 RNA 治疗学
Circ Res. 2018 Jul 6;123(2):205-220. doi: 10.1161/CIRCRESAHA.117.311311.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验