Suppr超能文献

康登屏蔽云的观察。

Observation of the Kondo screening cloud.

机构信息

Department of Physics, City University of Hong Kong, Kowloon, Hong Kong.

Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.

出版信息

Nature. 2020 Mar;579(7798):210-213. doi: 10.1038/s41586-020-2058-6. Epub 2020 Mar 11.

Abstract

When a magnetic impurity exists in a metal, conduction electrons form a spin cloud that screens the impurity spin. This basic phenomenon is called the Kondo effect. Unlike electric-charge screening, the spin-screening cloud occurs quantum coherently, forming spin-singlet entanglement with the impurity. Although the spins interact locally around the impurity, the Kondo cloud can theoretically spread out over several micrometres. The cloud has not so far been detected, and so its physical existence-a fundamental aspect of the Kondo effect-remains controversial. Here we present experimental evidence of a Kondo cloud extending over a length of micrometres, comparable to the theoretical length ξ. In our device, a Kondo impurity is formed in a quantum dot, coupling on one side to a quasi-one-dimensional channel that houses a Fabry-Pérot interferometer of various gate-defined lengths L exceeding one micrometre. When we sweep a voltage on the interferometer end gate-separated by L from the quantum dot-to induce Fabry-Pérot oscillations in conductance we observe oscillations in the measured Kondo temperature T, which is a signature of the Kondo cloud at distance L. When L is less than ξ the T oscillation amplitude becomes larger as L becomes smaller, obeying a scaling function of a single parameter L/ξ, whereas when L is greater than ξ the oscillation is much weaker. Our results reveal that ξ is the only length parameter associated with the Kondo effect, and that the cloud lies mostly within a length of ξ. Our experimental method offers a way of detecting the spatial distribution of exotic non-Fermi liquids formed by multiple magnetic impurities or multiple screening channels and of studying spin-correlated systems.

摘要

当金属中存在磁性杂质时,传导电子会形成一个自旋云,从而屏蔽杂质的自旋。这个基本现象被称为“Kondo 效应”。与电荷屏蔽不同,自旋屏蔽云是量子相干的,与杂质形成自旋单重态纠缠。虽然自旋在杂质周围局部相互作用,但 Kondo 云理论上可以扩展到几微米。到目前为止,尚未检测到这种云,因此其物理存在——Kondo 效应的一个基本方面——仍然存在争议。在这里,我们提供了长达数微米的 Kondo 云存在的实验证据,这与理论上的长度 ξ 相当。在我们的设备中,Kondo 杂质形成在量子点中,一侧与一个准一维通道耦合,该通道容纳一个具有各种栅长 L 的 Fabry-Pérot 干涉仪,L 超过一微米。当我们在干涉仪端栅上施加电压——与量子点相隔 L——以在电导中诱导 Fabry-Pérot 振荡时,我们观察到测量的 Kondo 温度 T 的振荡,这是距离 L 处 Kondo 云的特征。当 L 小于 ξ 时,T 振荡幅度随 L 减小而增大,服从单个参数 L/ξ 的标度函数,而当 L 大于 ξ 时,振荡幅度要弱得多。我们的结果表明,ξ 是与 Kondo 效应相关的唯一长度参数,并且云主要位于 ξ 的长度内。我们的实验方法提供了一种检测由多个磁性杂质或多个屏蔽通道形成的奇特非费米液体的空间分布以及研究自旋相关系统的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验