Godard Thibault, Zühlke Daniela, Richter Georg, Wall Melanie, Rohde Manfred, Riedel Katharina, Poblete-Castro Ignacio, Krull Rainer, Biedendieck Rebekka
Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.
Institute of Microbiology, Universität Greifswald, Greifswald, Germany.
Front Bioeng Biotechnol. 2020 Feb 21;8:47. doi: 10.3389/fbioe.2020.00047. eCollection 2020.
For many years now, serves as a microbial workhorse for the high-level production of recombinant proteins in the g/L-scale. However, efficient and stable production processes require the knowledge of the molecular adaptation strategies of the host organism to establish optimal environmental conditions. Here, we interrogated the osmotic stress response of using transcriptome, proteome, metabolome, and fluxome analyses. An initial transient adaptation consisted of potassium import and glutamate counterion synthesis. The massive synthesis of the compatible solute proline constituted the second longterm adaptation process. Several stress response enzymes involved in iron scavenging and reactive oxygen species (ROS) fighting proteins showed higher levels under prolonged osmotic stress induced by 1.8 M NaCl. At the same time, the downregulation of the expression of genes of the upper part of glycolysis resulted in the activation of the pentose phosphate pathway (PPP), generating an oversupply of NADPH. The increased production of lactate accompanied by the reduction of acetate secretion partially compensate for the unbalanced (NADH/NAD) ratio. Besides, the tricarboxylic acid cycle (TCA) mainly supplies the produced NADH, as indicated by the higher mRNA and protein levels of involved enzymes, and further confirmed by C flux analyses. As a consequence of the metabolic flux toward acetyl-CoA and the generation of an excess of NADPH, redirected the produced acetyl-CoA toward the polyhydroxybutyrate (PHB) biosynthetic pathway accumulating around 30% of the cell dry weight (CDW) as PHB. This direct relation between osmotic stress and intracellular PHB content has been evidenced for the first time, thus opening new avenues for synthesizing this valuable biopolymer using varying salt concentrations under non-limiting nutrient conditions.
多年来,[具体微生物名称未给出]一直是用于克/升规模重组蛋白高水平生产的微生物主力。然而,高效稳定的生产过程需要了解宿主生物体的分子适应策略,以建立最佳环境条件。在此,我们通过转录组、蛋白质组、代谢组和通量组分析研究了[具体微生物名称未给出]的渗透应激反应。最初的短暂适应包括钾离子导入和谷氨酸抗衡离子合成。相容性溶质脯氨酸的大量合成构成了第二个长期适应过程。在1.8 M NaCl诱导的长期渗透应激下,几种参与铁清除和活性氧(ROS)对抗蛋白的应激反应酶水平升高。同时,糖酵解上游部分基因表达的下调导致磷酸戊糖途径(PPP)的激活,产生过量的NADPH。乳酸产量增加并伴有乙酸分泌减少,部分补偿了(NADH/NAD)比例的失衡。此外,三羧酸循环(TCA)主要提供产生的NADH,相关酶的较高mRNA和蛋白质水平表明了这一点,并通过碳通量分析进一步证实。由于代谢通量向乙酰辅酶A的方向以及过量NADPH的产生,[具体微生物名称未给出]将产生的乙酰辅酶A重新导向聚羟基丁酸酯(PHB)生物合成途径,积累了约30%细胞干重(CDW)的PHB。首次证明了渗透应激与细胞内PHB含量之间的这种直接关系,从而为在非限制性营养条件下使用不同盐浓度合成这种有价值的生物聚合物开辟了新途径。