Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.
Bioline Reagents Ltd., Unit 16, The Edge Business Centre, Humber Road, London, NW2 6EW, UK.
Microb Cell Fact. 2017 Nov 22;16(1):211. doi: 10.1186/s12934-017-0823-5.
Over the last 10-15 years, a technology has been developed to engineer bacterial poly(3-hydroxybutyrate) (PHB) inclusions as functionalized beads, for applications such as vaccines, diagnostics and enzyme immobilization. This has been achieved by translational fusion of foreign proteins to the PHB synthase (PhaC). The respective fusion protein mediates self-assembly of PHB inclusions displaying the desired protein function. So far, beads have mainly been produced in recombinant Escherichia coli, which is problematic for some applications as the lipopolysaccharides (LPS) co-purified with such inclusions are toxic to humans and animals.
In this study, we have bioengineered the formation of functional PHB inclusions in the Gram-positive bacterium Bacillus megaterium, an LPS-free and established industrial production host. As B. megaterium is a natural PHB producer, the PHB-negative strain PHA05 was used to avoid any background PHB production. Plasmid-mediated T7 promoter-driven expression of the genes encoding β-ketothiolase (phaA), acetoacetyl-CoA-reductase (phaB) and PHB synthase (phaC) enabled PHB production in B. megaterium PHA05. To produce functionalized PHB inclusions, the N- and C-terminus of PhaC was fused to four and two IgG binding Z-domains from Staphylococcus aureus, respectively. The ZZ-domain PhaC fusion protein was strongly overproduced at the surface of the PHB inclusions and the corresponding isolated ZZ-domain displaying PHB beads were found to purify IgG with a binding capacity of 40-50 mg IgG/g beads. As B. megaterium has the ability to sporulate and respective endospores could co-purify with cellular inclusions, a sporulation negative production strain was generated by disrupting the spoIIE gene in PHA05. This strain did not produce spores when tested under sporulation inducing conditions and it was still able to synthesize ZZ-domain displaying PHB beads.
This study provides proof of concept for the successful genetic engineering of B. megaterium as a host for the production of functionalized PHB beads. Disruption of the spoIIE gene rendered B. megaterium incapable of sporulation but particularly suitable for production of functionalized PHB beads. This sporulation-negative mutant represents an improved industrial production strain for biotechnological processes otherwise impaired by the possibility of endospore formation.
在过去的 10-15 年中,开发了一种将细菌聚(3-羟基丁酸酯)(PHB)内含物工程化为功能性珠粒的技术,用于疫苗、诊断和酶固定化等应用。这是通过将外源蛋白与 PHB 合酶(PhaC)进行翻译融合来实现的。相应的融合蛋白介导 PHB 内含物的自组装,从而显示所需的蛋白功能。到目前为止,珠粒主要在重组大肠杆菌中生产,由于与这些内含物共纯化的脂多糖(LPS)对人和动物有毒,因此对于某些应用来说存在问题。
在这项研究中,我们在革兰氏阳性菌巨大芽孢杆菌中生物工程化了功能性 PHB 内含物的形成,巨大芽孢杆菌是一种无 LPS 的、已建立的工业生产宿主。由于巨大芽孢杆菌是天然 PHB 产生菌,因此使用 PHB 阴性菌株 PHA05 来避免任何背景 PHB 产生。通过质粒介导的 T7 启动子驱动的编码β-酮硫解酶(phaA)、乙酰乙酰辅酶 A 还原酶(phaB)和 PHB 合酶(phaC)的基因表达,使 PHB 在巨大芽孢杆菌 PHA05 中产生。为了生产功能性 PHB 内含物,将 PhaC 的 N 端和 C 端分别融合到来自金黄色葡萄球菌的四个和两个 IgG 结合 Z 结构域。ZZ 结构域 PhaC 融合蛋白在 PHB 内含物的表面强烈过表达,相应的分离的 ZZ 结构域显示 PHB 珠粒被发现能够纯化具有 40-50mg IgG/g 珠粒结合能力的 IgG。由于巨大芽孢杆菌具有形成孢子的能力,并且相应的内生孢子可以与细胞内含物一起共纯化,因此通过破坏 PHA05 中的 spoIIE 基因生成了一个不产孢子的生产菌株。在诱导孢子形成的条件下测试时,该菌株不产生孢子,但仍能够合成 ZZ 结构域显示 PHB 珠粒。
本研究为成功地将巨大芽孢杆菌基因工程化为生产功能性 PHB 珠粒的宿主提供了概念验证。spoIIE 基因的破坏使巨大芽孢杆菌无法形成孢子,但特别适合生产功能性 PHB 珠粒。该不产孢子的突变体代表了一种改进的工业生产菌株,用于生物技术过程,否则可能会受到孢子形成的可能性的影响。