Suppr超能文献

Hec1/Ndc80尾部结构域在动粒-微管界面的功能。

Hec1/Ndc80 Tail Domain Function at the Kinetochore-Microtubule Interface.

作者信息

Wimbish Robert T, DeLuca Jennifer G

机构信息

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States.

出版信息

Front Cell Dev Biol. 2020 Feb 26;8:43. doi: 10.3389/fcell.2020.00043. eCollection 2020.

Abstract

Successful mitotic cell division is critically dependent on the formation of correct attachments between chromosomes and spindle microtubules. Microtubule attachments are mediated by kinetochores, which are large proteinaceous structures assembled on centromeric chromatin of mitotic chromosomes. These attachments must be sufficiently stable to transduce force; however, the strength of these attachments are also tightly regulated to ensure timely, error-free progression through mitosis. The highly conserved, kinetochore-associated NDC80 complex is a core component of the kinetochore-microtubule attachment machinery in eukaryotic cells. A small, disordered region within the Hec1 subunit of the NDC80 complex - the N-terminal "tail" domain - has been actively investigated during the last decade due to its roles in generating and regulating kinetochore-microtubule attachments. In this review, we discuss the role of the NDC80 complex, and specifically the Hec1 tail domain, at the kinetochore-microtubule interface, and how recent studies provide a more unified view of Hec1 tail domain function.

摘要

有丝分裂细胞的成功分裂严重依赖于染色体与纺锤体微管之间形成正确的附着。微管附着由动粒介导,动粒是在有丝分裂染色体着丝粒染色质上组装的大型蛋白质结构。这些附着必须足够稳定以传递力;然而,这些附着的强度也受到严格调控,以确保有丝分裂过程能够及时、无误地进行。高度保守的、与动粒相关的NDC80复合体是真核细胞中动粒 - 微管附着机制的核心组成部分。在过去十年中,由于NDC80复合体的Hec1亚基内一个小的无序区域——N端“尾巴”结构域——在产生和调节动粒 - 微管附着中所起的作用,它一直受到积极研究。在这篇综述中,我们讨论了NDC80复合体,特别是Hec1尾巴结构域在动粒 - 微管界面的作用,以及最近的研究如何为Hec1尾巴结构域的功能提供了更统一的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9e0/7054225/e71749c418f1/fcell-08-00043-g001.jpg

相似文献

1
Hec1/Ndc80 Tail Domain Function at the Kinetochore-Microtubule Interface.
Front Cell Dev Biol. 2020 Feb 26;8:43. doi: 10.3389/fcell.2020.00043. eCollection 2020.
3
Dynamic acetylation of the kinetochore-associated protein HEC1 ensures accurate microtubule-kinetochore attachment.
J Biol Chem. 2019 Jan 11;294(2):576-592. doi: 10.1074/jbc.RA118.003844. Epub 2018 Nov 8.
4
Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1.
Curr Biol. 2008 Nov 25;18(22):1778-84. doi: 10.1016/j.cub.2008.08.012.
5
The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis.
Mol Biol Cell. 2011 Mar 15;22(6):759-68. doi: 10.1091/mbc.E10-08-0671. Epub 2011 Jan 26.
6
The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement.
Mol Biol Cell. 2011 Apr 15;22(8):1217-26. doi: 10.1091/mbc.E10-07-0626. Epub 2011 Feb 16.
7
Abnormal kinetochore-generated pulling forces from expressing a N-terminally modified Hec1.
PLoS One. 2011 Jan 28;6(1):e16307. doi: 10.1371/journal.pone.0016307.
8
9
Dephosphorylation of the Ndc80 Tail Stabilizes Kinetochore-Microtubule Attachments via the Ska Complex.
Dev Cell. 2017 May 22;41(4):424-437.e4. doi: 10.1016/j.devcel.2017.04.013.
10
Stable kinetochore-microtubule attachment requires loop-dependent Ndc80-Ndc80 binding.
EMBO J. 2023 Jul 3;42(13):e112504. doi: 10.15252/embj.2022112504. Epub 2023 May 19.

引用本文的文献

1
Ndc80 complex, a conserved coupler for kinetochore-microtubule motility, is a sliding molecular clutch.
Sci Adv. 2025 Sep 5;11(36):eadx0005. doi: 10.1126/sciadv.adx0005. Epub 2025 Sep 3.
6
Clinical and prognostic significance of Hec1 expression in patients with Cervical Cancer.
Front Oncol. 2024 Oct 31;14:1438734. doi: 10.3389/fonc.2024.1438734. eCollection 2024.
7
Mutation of the SUMOylation site of Aurora-B disrupts spindle formation and chromosome alignment in oocytes.
Cell Death Discov. 2024 Oct 22;10(1):447. doi: 10.1038/s41420-024-02217-7.
9
Measuring and modeling forces generated by microtubules.
Biophys Rev. 2023 Oct 13;15(5):1095-1110. doi: 10.1007/s12551-023-01161-7. eCollection 2023 Oct.
10

本文引用的文献

2
Mammalian kinetochores count attached microtubules in a sensitive and switch-like manner.
J Cell Biol. 2019 Nov 4;218(11):3583-3596. doi: 10.1083/jcb.201902105. Epub 2019 Sep 6.
3
PP1 and PP2A Use Opposite Phospho-dependencies to Control Distinct Processes at the Kinetochore.
Cell Rep. 2019 Aug 20;28(8):2206-2219.e8. doi: 10.1016/j.celrep.2019.07.067.
4
Spindle checkpoint silencing at kinetochores with submaximal microtubule occupancy.
J Cell Sci. 2019 Jun 17;132(12):jcs231589. doi: 10.1242/jcs.231589.
6
Aurora B-INCENP Localization at Centromeres/Inner Kinetochores Is Required for Chromosome Bi-orientation in Budding Yeast.
Curr Biol. 2019 May 6;29(9):1536-1544.e4. doi: 10.1016/j.cub.2019.03.051. Epub 2019 Apr 18.
7
Multiple phosphorylations control recruitment of the KMN network onto kinetochores.
Nat Cell Biol. 2018 Dec;20(12):1378-1388. doi: 10.1038/s41556-018-0230-0. Epub 2018 Nov 12.
8
Dynamic acetylation of the kinetochore-associated protein HEC1 ensures accurate microtubule-kinetochore attachment.
J Biol Chem. 2019 Jan 11;294(2):576-592. doi: 10.1074/jbc.RA118.003844. Epub 2018 Nov 8.
10
Kinase and Phosphatase Cross-Talk at the Kinetochore.
Front Cell Dev Biol. 2018 Jun 19;6:62. doi: 10.3389/fcell.2018.00062. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验