Suppr超能文献

测量和模拟微管产生的力。

Measuring and modeling forces generated by microtubules.

作者信息

Gudimchuk Nikita B, Alexandrova Veronika V

机构信息

Department of Physics, Lomonosov Moscow State University, Moscow, Russia.

Department of Biology, Lomonosov Moscow State University, Moscow, Russia.

出版信息

Biophys Rev. 2023 Oct 13;15(5):1095-1110. doi: 10.1007/s12551-023-01161-7. eCollection 2023 Oct.

Abstract

Tubulins are essential proteins, which are conserved across all eukaryotic species. They polymerize to form microtubules, cytoskeletal components of paramount importance for cellular mechanics. The microtubules combine an extraordinarily high flexural rigidity and a non-equilibrium behavior, manifested in their intermittent assembly and disassembly. These chemically fueled dynamics allow microtubules to generate significant pushing and pulling forces at their ends to reposition intracellular organelles, remodel membranes, bear compressive forces, and transport chromosomes during cell division. In this article, we review classical and recent studies, which have allowed the quantification of microtubule-generated forces. The measurements, to which we owe most of the quantitative information about microtubule forces, were carried out in biochemically reconstituted systems We also discuss how mathematical and computational modeling has contributed to the interpretations of these results and shaped our understanding of the mechanisms of force production by tubulin polymerization and depolymerization.

摘要

微管蛋白是所有真核生物物种中都保守的必需蛋白质。它们聚合形成微管,微管是细胞力学中至关重要的细胞骨架成分。微管兼具极高的抗弯刚度和非平衡行为,表现为其间歇性的组装和拆卸。这些由化学能驱动的动力学特性使微管能够在其末端产生显著的推拉力,以重新定位细胞内的细胞器、重塑膜结构、承受压力并在细胞分裂期间运输染色体。在本文中,我们回顾了经典研究和近期研究,这些研究使得对微管产生的力进行量化成为可能。我们所掌握的关于微管力的大部分定量信息都源自于在生化重构系统中所进行的测量。我们还将讨论数学和计算建模如何有助于对这些结果的解释,并塑造了我们对微管蛋白聚合和解聚产生力的机制的理解。

相似文献

1
Measuring and modeling forces generated by microtubules.测量和模拟微管产生的力。
Biophys Rev. 2023 Oct 13;15(5):1095-1110. doi: 10.1007/s12551-023-01161-7. eCollection 2023 Oct.
7
Force generation by dynamic microtubules.动态微管产生的力。
Curr Opin Cell Biol. 2005 Feb;17(1):67-74. doi: 10.1016/j.ceb.2004.12.011.
8
10
Measuring microtubule dynamics.测量微管动力学。
Essays Biochem. 2018 Dec 7;62(6):725-735. doi: 10.1042/EBC20180035.

本文引用的文献

1
Compressive forces stabilize microtubules in living cells.压缩力使活细胞中的微管稳定。
Nat Mater. 2023 Jul;22(7):913-924. doi: 10.1038/s41563-023-01578-1. Epub 2023 Jun 29.
2
Unveiling the catalytic mechanism of GTP hydrolysis in microtubules.揭示微管中 GTP 水解的催化机制。
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2305899120. doi: 10.1073/pnas.2305899120. Epub 2023 Jun 26.
7
Strain stiffening of Ndc80 complexes attached to microtubule plus ends.Ndc80 复合物在微管正极端的应变硬化。
Biophys J. 2022 Nov 1;121(21):4048-4062. doi: 10.1016/j.bpj.2022.09.039. Epub 2022 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验