Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
Mol Inform. 2020 Aug;39(8):e2000028. doi: 10.1002/minf.202000028. Epub 2020 Mar 23.
The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated COVID-19 disease cause serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to effectively combat the outbreak. This urgent situation is pressing the world to respond with the development of novel vaccine or a small molecule therapeutics for SARS-CoV-2. Along these efforts, the structure of SARS-CoV-2 main protease (Mpro) has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates. Recently, our group has developed a novel deep learning platform - Deep Docking (DD) which provides fast prediction of docking scores of Glide (or any other docking program) and, hence, enables structure-based virtual screening of billions of purchasable molecules in a short time. In the current study we applied DD to all 1.3 billion compounds from ZINC15 library to identify top 1,000 potential ligands for SARS-CoV-2 Mpro protein. The compounds are made publicly available for further characterization and development by scientific community.
新出现的 2019 年新型冠状病毒(SARS-CoV-2)和相关的 COVID-19 疾病可导致严重甚至致命的呼吸道感染,但目前尚无经过批准的治疗方法或有效治疗方法可有效应对疫情爆发。这种紧急情况迫使全世界通过开发针对 SARS-CoV-2 的新型疫苗或小分子疗法来做出回应。在这些努力的过程中,SARS-CoV-2 主要蛋白酶(Mpro)的结构已被迅速解析并公开提供,以促进全球开发新型药物候选物的努力。最近,我们的团队开发了一种新的深度学习平台——Deep Docking(DD),该平台可快速预测 Glide(或任何其他对接程序)的对接分数,从而能够在短时间内对数十亿可购买的分子进行基于结构的虚拟筛选。在本研究中,我们将来自 ZINC15 库的 13 亿个化合物应用于 DD,以鉴定 SARS-CoV-2 Mpro 蛋白的前 1000 个潜在配体。这些化合物已公开提供给科学界进行进一步的表征和开发。