Suppr超能文献

通过对 13 亿种化合物进行深度对接,快速鉴定 SARS-CoV-2 主要蛋白酶的潜在抑制剂。

Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds.

机构信息

Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.

出版信息

Mol Inform. 2020 Aug;39(8):e2000028. doi: 10.1002/minf.202000028. Epub 2020 Mar 23.

Abstract

The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated COVID-19 disease cause serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to effectively combat the outbreak. This urgent situation is pressing the world to respond with the development of novel vaccine or a small molecule therapeutics for SARS-CoV-2. Along these efforts, the structure of SARS-CoV-2 main protease (Mpro) has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates. Recently, our group has developed a novel deep learning platform - Deep Docking (DD) which provides fast prediction of docking scores of Glide (or any other docking program) and, hence, enables structure-based virtual screening of billions of purchasable molecules in a short time. In the current study we applied DD to all 1.3 billion compounds from ZINC15 library to identify top 1,000 potential ligands for SARS-CoV-2 Mpro protein. The compounds are made publicly available for further characterization and development by scientific community.

摘要

新出现的 2019 年新型冠状病毒(SARS-CoV-2)和相关的 COVID-19 疾病可导致严重甚至致命的呼吸道感染,但目前尚无经过批准的治疗方法或有效治疗方法可有效应对疫情爆发。这种紧急情况迫使全世界通过开发针对 SARS-CoV-2 的新型疫苗或小分子疗法来做出回应。在这些努力的过程中,SARS-CoV-2 主要蛋白酶(Mpro)的结构已被迅速解析并公开提供,以促进全球开发新型药物候选物的努力。最近,我们的团队开发了一种新的深度学习平台——Deep Docking(DD),该平台可快速预测 Glide(或任何其他对接程序)的对接分数,从而能够在短时间内对数十亿可购买的分子进行基于结构的虚拟筛选。在本研究中,我们将来自 ZINC15 库的 13 亿个化合物应用于 DD,以鉴定 SARS-CoV-2 Mpro 蛋白的前 1000 个潜在配体。这些化合物已公开提供给科学界进行进一步的表征和开发。

相似文献

1
Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds.
Mol Inform. 2020 Aug;39(8):e2000028. doi: 10.1002/minf.202000028. Epub 2020 Mar 23.
4
Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy.
Virus Res. 2020 Oct 15;288:198102. doi: 10.1016/j.virusres.2020.198102. Epub 2020 Jul 24.
5
Structure-based lead optimization of herbal medicine rutin for inhibiting SARS-CoV-2's main protease.
Phys Chem Chem Phys. 2020 Nov 21;22(43):25335-25343. doi: 10.1039/d0cp03867a. Epub 2020 Nov 3.
9
Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M enzyme through in silico approach.
Life Sci. 2020 Aug 15;255:117831. doi: 10.1016/j.lfs.2020.117831. Epub 2020 May 22.
10
Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel Method.
Molecules. 2020 Aug 23;25(17):3830. doi: 10.3390/molecules25173830.

引用本文的文献

1
Protein Spatial Structure Meets Artificial Intelligence: Revolutionizing Drug Synergy-Antagonism in Precision Medicine.
Adv Sci (Weinh). 2025 Sep;12(33):e07764. doi: 10.1002/advs.202507764. Epub 2025 Aug 7.
2
Highly pathogenic avian influenza: pandemic preparedness for a scenario of high lethality with no vaccines.
Front Public Health. 2025 Jul 16;13:1613869. doi: 10.3389/fpubh.2025.1613869. eCollection 2025.
3
Discovery of SARS-CoV-2 Nsp14-Methyltransferase (MTase) Inhibitors by Harnessing Scaffold-Centric Exploration of the Ultra Large Chemical Space.
ACS Pharmacol Transl Sci. 2025 Apr 25;8(5):1366-1400. doi: 10.1021/acsptsci.5c00111. eCollection 2025 May 9.
4
Functionally active modulators targeting the LRRK2 WD40 repeat domain identified by FRASE-bot in CACHE Challenge #1.
Chem Sci. 2025 Jan 9;16(8):3430-3439. doi: 10.1039/d4sc07532c. eCollection 2025 Feb 19.
6
Overview of Computational Toxicology Methods Applied in Drug and Green Chemical Discovery.
J Xenobiot. 2024 Dec 4;14(4):1901-1918. doi: 10.3390/jox14040101.
7
Retrieval Augmented Docking Using Hierarchical Navigable Small Worlds.
J Chem Inf Model. 2024 Oct 14;64(19):7398-7408. doi: 10.1021/acs.jcim.4c00683. Epub 2024 Oct 3.
9
screening of LRRK2 WDR domain inhibitors using deep docking and free energy simulations.
Chem Sci. 2024 Apr 11;15(23):8800-8812. doi: 10.1039/d3sc06880c. eCollection 2024 Jun 12.
10
Consensus holistic virtual screening for drug discovery: a novel machine learning model approach.
J Cheminform. 2024 May 28;16(1):62. doi: 10.1186/s13321-024-00855-8.

本文引用的文献

1
Deep Learning Based Drug Screening for Novel Coronavirus 2019-nCov.
Interdiscip Sci. 2020 Sep;12(3):368-376. doi: 10.1007/s12539-020-00376-6. Epub 2020 Jun 1.
2
The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus.
J Biol Chem. 2020 Apr 10;295(15):4773-4779. doi: 10.1074/jbc.AC120.013056. Epub 2020 Feb 24.
3
Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.
Cell Res. 2020 Mar;30(3):269-271. doi: 10.1038/s41422-020-0282-0. Epub 2020 Feb 4.
5
DeepBindRG: a deep learning based method for estimating effective protein-ligand affinity.
PeerJ. 2019 Jul 25;7:e7362. doi: 10.7717/peerj.7362. eCollection 2019.
6
Ultra-large library docking for discovering new chemotypes.
Nature. 2019 Feb;566(7743):224-229. doi: 10.1038/s41586-019-0917-9. Epub 2019 Feb 6.
7
From SARS to MERS, Thrusting Coronaviruses into the Spotlight.
Viruses. 2019 Jan 14;11(1):59. doi: 10.3390/v11010059.
8
The Taxonomy of Covalent Inhibitors.
Biochemistry. 2018 Jun 19;57(24):3326-3337. doi: 10.1021/acs.biochem.8b00315. Epub 2018 Apr 30.
10
Software for molecular docking: a review.
Biophys Rev. 2017 Apr;9(2):91-102. doi: 10.1007/s12551-016-0247-1. Epub 2017 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验