Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, United States.
School of Environmental Studies, China University of Geosciences, Wuhan, Hubei Province 430074, P. R. China.
Environ Sci Technol. 2020 Apr 7;54(7):3752-3766. doi: 10.1021/acs.est.9b05565. Epub 2020 Mar 23.
Advanced reduction processes (ARPs) have emerged as a promising method for destruction of persistent per- and polyfluoroalkyl substances (PFAS) in water due to the generation of short-lived and highly reductive hydrated electrons (e). This study provides a critical review on the mechanisms and performance of reductive destruction of PFAS with e. Unique properties of e and its generation in different ARP systems, particularly UV/sulfite and UV/iodide, are overviewed. Different degradation mechanisms of PFAS chemicals, such as perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and others (e.g., short chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), per- and polyfluoro dicarboxylic acids, and fluorotelomer carboxylic acids), are reviewed, discussed, and compared. The degradation pathways of these PFAS chemicals rely heavily upon their head groups. For specific PFAS types, fluoroalkyl chain lengths may also affect their reductive degradation patterns. Degradation and defluorination efficiencies of PFAS are considerably influenced by solution chemistry parameters and operating factors, such as pH, dose of chemical solute (i.e., sulfite or iodide) for e photoproduction, dissolved oxygen, humic acid, nitrate, and temperature. Furthermore, implications of the state-of-the-art knowledge on practical PFAS control actions in water industries are discussed and the priority research needs are identified.
高级还原工艺(ARPs)由于生成短寿命且高度还原的水合电子(e),已成为水中持久性全氟和多氟烷基物质(PFAS)破坏的一种很有前途的方法。本研究对 e 还原破坏 PFAS 的机制和性能进行了批判性评价。综述了 e 的独特性质及其在不同 ARP 系统(特别是 UV/亚硫酸盐和 UV/碘化物)中的产生情况。综述了不同 PFAS 化学品(如全氟辛酸(PFOA)、全氟辛烷磺酸(PFOS)和其他化学品(如短链全氟羧酸(PFCAs)和全氟磺酸(PFSAs)、全氟二羧酸和氟代端基羧酸)的降解机制,并进行了讨论和比较。这些 PFAS 化学品的降解途径在很大程度上取决于其头基。对于特定的 PFAS 类型,氟烷基链长也可能影响其还原降解模式。PFAS 的降解和脱氟效率受溶液化学参数和操作因素(如 pH 值、用于 e 光生产的化学溶质(即亚硫酸盐或碘化物)剂量、溶解氧、腐殖酸、硝酸盐和温度)的影响很大。此外,还讨论了水行业中实用 PFAS 控制措施的最新知识的意义,并确定了优先的研究需求。