Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
Department of Civil Engineering, Queen's University, Kingston, ON, Canada.
Sci Total Environ. 2023 Aug 25;888:164137. doi: 10.1016/j.scitotenv.2023.164137. Epub 2023 May 12.
As the global issue of PFAS contamination in water continues to grow there exists a need for technologies capable of fully mineralizing PFAS in water, with destruction being measured as both a loss of the initial PFAS and a quantitative recovery of the resultant fluoride ions. This study investigates the use of sulfite and iodide in a bicarbonate-buffered alkaline system activated with ultraviolet (UV) light to destroy PFAS. The UV/sulfite/iodide system creates a reductive environment through the generation of aqueous electrons, which can degrade PFAS. The extent of degradation and defluorination was explored for perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), 6:2 fluorotelomer sulfonic acid (6:2 FTS), and perfluorobutane sulfonic acid (PFBS). An initial UV/sulfite/iodide system achieved 100 % degradation and > 90 % defluorination for PFOS, PFOA, and 6:2 FTS, but was not capable of completely degrading PFBS. Transformation product elucidation experiments were performed for PFOS under different UV systems, and 6:2 FtSaB using the initial UV/sulfite/iodide system. Several transformation products were identified including -nF/+nH PFOS (n = 1-13), -F/+H shorter-chain PFSAs, 6:2 fluorotelomer sulfonamidoamine (6:2 FtSaAm), 6:2 fluorotelomer sulfonamide, and 6:2 fluorotelomer unsaturated sulfonamide. Novel identification of -F/+H perfluoropropane sulfonic acid (PFPS) and -F/+H perfluoroethane sulfonic acid (PFES) following degradation of PFOS confirms CC bond cleavage, and different isomers of -F/+H PFOS confirms the potential for CF bond cleavage to occur throughout the perfluoroalkyl chain. Additional optimization experiments were performed aiming to fully degrade PFBS. The optimal protocol found in this study involved an elevated initial sulfite concentration and adding additional sulfite at regular intervals during UV-activation, achieving >99.9 % destruction and complete quantitative defluorination of PFBS.
随着全球范围内水中全氟化合物污染问题的不断加剧,人们需要开发能够完全矿化水中全氟化合物的技术,其矿化程度可通过初始全氟化合物的损失和生成氟化物离子的定量回收来衡量。本研究采用亚硫酸盐和碘化物在碳酸氢盐缓冲碱性体系中,结合紫外线(UV)光激活来破坏全氟化合物。UV/亚硫酸盐/碘化物体系通过生成水合电子产生还原环境,从而降解全氟化合物。本研究探索了过氧硫酸根(PFOS)、全氟辛酸(PFOA)、6:2 氟代烷烃磺酸(6:2 FTS)和全氟丁烷磺酸(PFBS)在该体系中的降解和脱氟程度。初始 UV/亚硫酸盐/碘化物体系可实现 100%的 PFOS、PFOA 和 6:2 FTS 降解和>90%的脱氟,但无法完全降解 PFBS。本研究还在不同的 UV 体系和初始 UV/亚硫酸盐/碘化物体系下对 PFOS 进行转化产物解析实验,并对 6:2 FtSaB 进行了转化产物解析实验。鉴定出了包括-nF/+nH PFOS(n=1-13)、-F/+H 短链全氟羧酸、6:2 氟代烷烃磺酰胺基胺(6:2 FtSaAm)、6:2 氟代烷烃磺酰胺和 6:2 氟代烷烃不饱和磺酰胺在内的多种转化产物。PFOS 降解后生成的-F/+H 全氟丙烷磺酸(PFPS)和-F/+H 全氟乙烷磺酸(PFES)的新型鉴定证实了 C-C 键的断裂,-F/+H PFOS 不同异构体的鉴定则证实了 C-F 键在全氟烷基链中可能发生断裂。本研究还进行了旨在完全降解 PFBS 的优化实验。本研究发现的最佳方案是提高初始亚硫酸盐浓度,并在 UV 激活过程中定期添加额外的亚硫酸盐,从而实现>99.9%的 PFBS 破坏和完全定量脱氟。