Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States.
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
Environ Sci Technol. 2022 Mar 15;56(6):3699-3709. doi: 10.1021/acs.est.1c07608. Epub 2022 Feb 28.
The addition of iodide (I) in the UV/sulfite system (UV/S) significantly accelerated the reductive degradation of perfluorosulfonates (PFSAs, CFSO) and perfluorocarboxylates (PFCAs, CFCOO). Using the highly recalcitrant perfluorobutane sulfonate (CFSO) as a probe, we optimized the UV/sulfite + iodide system (UV/S + I) to degrade = 1-7 PFCAs and = 4, 6, 8 PFSAs. In general, the kinetics of per- and polyfluoroalkyl substance (PFAS) decay, defluorination, and transformation product formations in UV/S + I were up to three times faster than those in UV/S. Both systems achieve a similar maximum defluorination. The enhanced reaction rates and optimized photoreactor settings lowered the EE/O for PFCA degradation below 1.5 kW h m. The relatively high quantum yield of e from I made the availability of hydrated electrons (e) in UV/S + I and UV/I two times greater than that in UV/S. Meanwhile, the rapid scavenging of reactive iodine species by SO made the lifetime of e in UV/S + I eight times longer than that in UV/I. The addition of I also substantially enhanced SO utilization in treating concentrated PFAS. The optimized UV/S + I system achieved >99.7% removal of most PFSAs and PFCAs and >90% overall defluorination in a synthetic solution of concentrated PFAS mixtures and NaCl. We extended the discussion over molecular transformation mechanisms, development of PFAS degradation technologies, and the fate of iodine species.
碘(I)在紫外线/亚硫酸盐系统(UV/S)中的添加显著加速了全氟磺酸酯(PFSAs,CFSO)和全氟羧酸酯(PFCAs,CFCOO)的还原降解。使用高度难降解的全氟丁烷磺酸盐(CFSO)作为探针,我们优化了紫外线/亚硫酸盐+碘系统(UV/S + I)以降解 = 1-7 PFCAs 和 = 4、6、8 PFSAs。一般来说,PFAS 的衰减、脱氟和转化产物形成的动力学在 UV/S + I 中比在 UV/S 中快了三倍。两个系统都达到了类似的最大脱氟程度。增强的反应速率和优化的光反应器设置使 PFCA 降解的 EE/O 降至 1.5 kW h m 以下。I 中 e 的相对高量子产率使 UV/S + I 和 UV/I 中的水合电子(e)可用性比 UV/S 中的大两倍。同时,SO 快速清除反应性碘物种使 UV/S + I 中的 e 寿命比 UV/I 中的长八倍。I 的添加还大大增强了处理浓缩 PFAS 中 SO 的利用。优化的 UV/S + I 系统在处理浓缩 PFAS 混合物和 NaCl 的合成溶液中实现了 >99.7%的大多数 PFSAs 和 PFCAs 的去除和 >90%的总脱氟。我们扩展了对分子转化机制、PFAS 降解技术的发展以及碘物种命运的讨论。