Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
J Chem Inf Model. 2020 May 26;60(5):2448-2457. doi: 10.1021/acs.jcim.9b01015. Epub 2020 Mar 20.
A giant technological leap in the field of cryo-electron microscopy (cryo-EM) has assured the achievement of near-atomic resolution structures of biological macromolecules. As a recognition of this accomplishment, the Nobel Prize in Chemistry was awarded in 2017 to Jacques Dubochet, Joachim Frank, and Richard Henderson, the pioneers in the field of cryo-EM. Currently, the technique has become the method of choice for structural analysis of heterogeneous and intrinsically dynamic biological complexes. In the past few years, the most prolific branch of cryo-EM, single particle analysis, has revolutionized the structural biology field and structural investigation of membrane proteins, in particular. To achieve high-resolution structures of macromolecules in noncrystalline specimens, from sample and grid preparation to image acquisition, image data processing, and analysis of 3D maps, methodological advances in each of the steps play critical roles. In this Review, we discuss two areas in single particle cryo-EM, the remarkable developments in sample preparation strategies, particularly for membrane proteins, and breakthroughs in methodologies for molecular model building on the high-resolution 3D density maps that brought promises to resolve high-resolution (<4 Å) structures of biological macromolecules.
在冷冻电子显微镜(cryo-EM)领域的一项巨大技术飞跃,确保了生物大分子的近原子分辨率结构的实现。为了表彰这一成就,2017 年诺贝尔化学奖授予了 cryo-EM 领域的先驱雅克·杜波谢(Jacques Dubochet)、约阿希姆·弗兰克(Joachim Frank)和理查德·亨德森(Richard Henderson)。目前,该技术已成为分析异质和固有动态生物复合物结构的首选方法。在过去的几年中,cryo-EM 中最具成效的分支——单颗粒分析,彻底改变了结构生物学领域,特别是膜蛋白的结构研究。为了实现非晶体标本中大分子的高分辨率结构,从样品和网格制备到图像采集、图像数据处理以及三维图谱分析,每个步骤中的方法学进展都起着至关重要的作用。在这篇综述中,我们讨论了单颗粒 cryo-EM 的两个领域,即样品制备策略的显著发展,特别是针对膜蛋白,以及在高分辨率 3D 密度图谱上进行分子模型构建的方法学突破,这些突破有望解析生物大分子的高分辨率(<4 Å)结构。