Suppr超能文献

弥合纳米线与约瑟夫森结之间的差距:一种基于可控磁通子转移的超导器件。

Bridging the Gap Between Nanowires and Josephson Junctions: A Superconducting Device Based on Controlled Fluxon Transfer.

作者信息

Toomey E, Onen M, Colangelo M, Butters B A, McCaughan A N, Berggren K K

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.

出版信息

Phys Rev Appl. 2019;11(3). doi: 10.1103/physrevapplied.11.034006.

Abstract

The basis for superconducting electronics can broadly be divided between two technologies: the Josephson junction and the superconducting nanowire. While the Josephson junction (JJ) remains the dominant technology due to its high speed and low power dissipation, recently proposed nanowire devices offer improvements such as gain, high fanout, and compatibility with CMOS circuits. Despite these benefits, nanowire-based electronics have largely been limited to binary operations, with devices switching between the superconducting state and a high-impedance resistive state dominated by uncontrolled hotspot dynamics. Unlike the JJ, they cannot increment an output through successive switching and their operation speeds are limited by their slow thermal-reset times. Thus, there is a need for an intermediate device with the interfacing capabilities of a nanowire but a faster, moderated response allowing for modulation of the output. We present a nanowire device based on controlled fluxon transport. We show that the device is capable of responding proportionally to the strength of its input, unlike other nanowire technologies. The device can be operated to produce a multilevel output with distinguishable states, the number of which can be tuned by circuit parameters. Agreement between experimental results and electrothermal circuit simulations demonstrates that the device is classical and may be readily engineered for applications including use as a multilevel memory.

摘要

超导电子学的基础大致可分为两种技术

约瑟夫森结和超导纳米线。虽然约瑟夫森结(JJ)由于其高速和低功耗仍然是主导技术,但最近提出的纳米线器件具有诸如增益、高扇出以及与CMOS电路兼容性等优势。尽管有这些优点,但基于纳米线的电子器件在很大程度上仅限于二进制操作,器件在超导状态和由不受控制的热点动力学主导的高阻抗电阻状态之间切换。与约瑟夫森结不同,它们不能通过连续切换来增加输出,并且其运行速度受到缓慢热复位时间的限制。因此,需要一种中间器件,它具有纳米线的接口能力,但响应更快、更适度,能够调制输出。我们展示了一种基于可控磁通子传输的纳米线器件。我们表明,与其他纳米线技术不同,该器件能够按比例响应其输入强度。该器件可以运行以产生具有可区分状态的多级输出,其数量可以通过电路参数进行调整。实验结果与电热电路模拟之间的一致性表明,该器件是经典的,并且可以很容易地设计用于包括用作多级存储器在内的应用。

相似文献

2
A superconducting-nanowire three-terminal electrothermal device.超导纳米线三端电热设备。
Nano Lett. 2014 Oct 8;14(10):5748-53. doi: 10.1021/nl502629x. Epub 2014 Sep 22.
4
A Superconducting Binary Encoder with Multigate Nanowire Cryotrons.一种具有多栅纳米线低温管的超导二进制编码器。
Nano Lett. 2020 May 13;20(5):3553-3559. doi: 10.1021/acs.nanolett.0c00498. Epub 2020 Apr 17.
10
Strong Superconducting Proximity Effects in PbS Semiconductor Nanowires.PbS 半导体纳米线中的强超导近邻效应。
ACS Nano. 2017 Jan 24;11(1):221-226. doi: 10.1021/acsnano.6b04774. Epub 2017 Jan 9.

引用本文的文献

本文引用的文献

3
Using Geometry To Sense Current.利用几何形状感知电流。
Nano Lett. 2016 Dec 14;16(12):7626-7631. doi: 10.1021/acs.nanolett.6b03593. Epub 2016 Dec 1.
4
A superconducting-nanowire three-terminal electrothermal device.超导纳米线三端电热设备。
Nano Lett. 2014 Oct 8;14(10):5748-53. doi: 10.1021/nl502629x. Epub 2014 Sep 22.
5
Quantum computers.量子计算机。
Nature. 2010 Mar 4;464(7285):45-53. doi: 10.1038/nature08812.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验