Suppr超能文献

老年急性卒中患者预后的早期预测

Early Prediction of Prognosis in Elderly Acute Stroke Patients.

作者信息

Bautista Alexander F, Lenhardt Rainer, Yang Dongsheng, Yu Changhong, Heine Michael F, Mascha Edward J, Heine Cate, Neyer Thomas M, Remmel Kerri, Akca Ozan

机构信息

Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK.

Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY.

出版信息

Crit Care Explor. 2019 Apr 29;1(4):e0007. doi: 10.1097/CCE.0000000000000007. eCollection 2019 Apr.

Abstract

UNLABELLED

Acute stroke has a high morbidity and mortality in elderly population. Baseline confounding illnesses, initial clinical examination, and basic laboratory tests may impact prognostics. In this study, we aimed to establish a model for predicting in-hospital mortality based on clinical data available within 12 hours of hospital admission in elderly (≥ 65 age) patients who experienced stroke.

DESIGN

Retrospective observational cohort study.

SETTING

Academic comprehensive stroke center.

PATIENTS

Elderly acute stroke patients-2005-2009 ( = 462), 2010-2012 ( = 122), and 2016-2017 ( = 123).

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

After institutional review board approval, we retrospectively queried elderly stroke patients' data from 2005 to 2009 (training dataset) to build a model to predict mortality. We designed a multivariable logistic regression model as a function of baseline severity of illness and laboratory tests, developed a nomogram, and applied it to patients from 2010 to 2012. Due to updated guidelines in 2013, we revalidated our model (2016-2017). The final model included stroke type (intracerebral hemorrhage vs ischemic stroke: odds ratio [95% CI] of 0.92 [0.50-1.68] and subarachnoid hemorrhage vs ischemic stroke: 1.0 [0.40-2.49]), year (1.01 [0.66-1.53]), age (1.78 [1.20-2.65] per 10 yr), smoking (8.0 [2.4-26.7]), mean arterial pressure less than 60 mm Hg (3.08 [1.67-5.67]), Glasgow Coma Scale (0.73 [0.66-0.80] per 1 point increment), WBC less than 11 K (0.31 [0.16-0.60]), creatinine (1.76 [1.17-2.64] for 2 vs 1), congestive heart failure (2.49 [1.06-5.82]), and warfarin (2.29 [1.17-4.47]). In summary, age, smoking, congestive heart failure, warfarin use, Glasgow Coma Scale, mean arterial pressure less than 60 mm Hg, admission WBC, and creatinine levels were independently associated with mortality in our training cohort. The model had internal area under the curve of 0.83 (0.79-0.89) after adjustment for over-fitting, indicating excellent discrimination. When applied to the test data from 2010 to 2012, the nomogram accurately predicted mortality with area under the curve of 0.79 (0.71-0.87) and scaled Brier's score of 0.17. Revalidation of the same model in the recent dataset from 2016 to 2017 confirmed accurate prediction with area under the curve of 0.83 (0.75-0.91) and scaled Brier's score of 0.27.

CONCLUSIONS

Baseline medical problems, clinical severity, and basic laboratory tests available within the first 12 hours of admission provided strong independent predictors of in-hospital mortality in elderly acute stroke patients. Our nomogram may guide interventions to improve acute care of stroke.

摘要

未标注

急性中风在老年人群中具有较高的发病率和死亡率。基线混杂疾病、初始临床检查和基本实验室检查可能会影响预后。在本研究中,我们旨在基于65岁及以上老年中风患者入院12小时内可获得的临床数据建立一个预测院内死亡率的模型。

设计

回顾性观察队列研究。

地点

学术性综合中风中心。

患者

2005 - 2009年(n = 462)、2010 - 2012年(n = 122)和2016 - 2017年(n = 123)的老年急性中风患者。

干预措施

无。

测量指标及主要结果

经机构审查委员会批准后,我们回顾性查询了2005年至2009年老年中风患者的数据(训练数据集)以建立预测死亡率的模型。我们设计了一个多变量逻辑回归模型,该模型是疾病基线严重程度和实验室检查的函数,绘制了列线图,并将其应用于2010年至2012年的患者。由于2013年指南更新,我们对模型进行了重新验证(2016 - 2017年)。最终模型包括中风类型(脑出血与缺血性中风:比值比[95%可信区间]为0.92[0.50 - 1.68],蛛网膜下腔出血与缺血性中风:1.0[0.40 - 2.49])、年份(1.01[0.66 - 1.53])、年龄(每10岁1.78[1.20 - 2.65])、吸烟(8.0[2.4 - 26.7])、平均动脉压低于60 mmHg(3.08[1.67 - 5.67])、格拉斯哥昏迷量表(每增加1分0.73[0.66 - 0.80])、白细胞低于11K(0.31[0.16 - 0.60])、肌酐(2期与1期相比为1.76[1.17 - 2.64])、充血性心力衰竭(2.49[1.06 - 5.82])和华法林(2.29[1.17 - 4.47])。总之,在我们的训练队列中,年龄、吸烟、充血性心力衰竭、华法林使用、格拉斯哥昏迷量表、平均动脉压低于60 mmHg、入院时白细胞和肌酐水平与死亡率独立相关。调整过拟合后,该模型的内部曲线下面积为0.83(0.79 - 0.89),表明具有出色的区分度。当应用于2010年至2012年的测试数据时,列线图准确预测了死亡率,曲线下面积为0.79(0.71 - 0.87),标准化布里尔评分0.17。在2016年至2017年的最新数据集中对同一模型进行重新验证,证实预测准确,曲线下面积为0.83(0.75 - 0.91),标准化布里尔评分为0.27。

结论

入院后12小时内的基线医疗问题、临床严重程度和基本实验室检查为老年急性中风患者的院内死亡率提供了强有力的独立预测指标。我们的列线图可能会指导干预措施,以改善中风的急性护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e367/7063873/040870f7dc49/cc9-1-e0007-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验