Suppr超能文献

中国农村地区轻度且病情迅速改善的急性缺血性卒中患者延迟入院的预测

Prediction of Late Hospital Arrival in Patients with Mild and Rapidly Improving Acute Ischemic Stroke in a Rural Area of China.

作者信息

Song Yeping, Shen Fei, Dong Qing, Wang Liling, Mi Jianhua

机构信息

Cerebrovascular Disease Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China.

Health Management Center, Renji Hospital, School of Medical School, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China.

出版信息

Risk Manag Healthc Policy. 2023 Jun 20;16:1119-1129. doi: 10.2147/RMHP.S414700. eCollection 2023.

Abstract

PURPOSE

Among all ischemic stroke patients, more than half are mild and rapidly improving acute ischemic stroke (MaRAIS) patients. However, many MaRAIS patients do not recognize the disease early on, and thus they delay access to the treatment that would be most effective if provided earlier. This is especially true in rural areas. The aim of this study was to develop and validate a late hospital arrival risk nomogram in a rural Chinese population of patients with MaRAIS.

METHODS

We developed a prediction model based on a training dataset of 173 MaRAIS patients collected from September 9, 2019 to May 13, 2020. Data analyzed included demographics and disease characteristics. A least absolute shrinkage and selection operator (LASSO) regression model was used to optimize feature selection for the late hospital arrival risk model. Multivariable logistic regression analysis was applied to build a prediction model incorporating the features selected in the LASSO regression models. The discrimination, calibration, and clinical usefulness of the prediction model were assessed using the C-index, calibration plot, and decision curve analysis, respectively. Internal validation was then assessed using bootstrapping validation.

RESULTS

Variables contained in the prediction nomogram included transportation mode, history of diabetes, knowledge of stroke symptoms, and thrombolytic therapy. The model had moderate predictive power with a C-index of 0.709 (95% confidence interval: 0.636-0.783) and good calibration. In the internal validation, the C-index reached 0.692. The risk threshold was 30-97% according to the analysis of the decision curve, and the nomogram could be applied in clinical practice.

CONCLUSION

This novel nomogram, which incorporates transportation mode, history of diabetes, knowledge of stroke symptoms, and thrombolytic therapy, was conveniently applied to facilitate individual late hospital arrival risk prediction among MaRAIS patients in a rural area of Shanghai, China.

摘要

目的

在所有缺血性中风患者中,超过一半是轻度且病情迅速改善的急性缺血性中风(MaRAIS)患者。然而,许多MaRAIS患者早期并未认识到该病,因此他们延迟了获得早期治疗效果最佳的治疗。农村地区尤其如此。本研究的目的是在中国农村MaRAIS患者人群中开发并验证一个晚期入院风险列线图。

方法

我们基于2019年9月9日至2020年5月13日收集的173例MaRAIS患者的训练数据集开发了一个预测模型。分析的数据包括人口统计学和疾病特征。使用最小绝对收缩和选择算子(LASSO)回归模型优化晚期入院风险模型的特征选择。应用多变量逻辑回归分析构建一个纳入LASSO回归模型中所选特征的预测模型。分别使用C指数、校准图和决策曲线分析评估预测模型的辨别力、校准度和临床实用性。然后使用自助验证评估内部验证。

结果

预测列线图中的变量包括交通方式、糖尿病史、中风症状知晓情况和溶栓治疗。该模型具有中等预测能力,C指数为0.709(95%置信区间:0.636 - 0.783)且校准良好。在内部验证中,C指数达到0.692。根据决策曲线分析,风险阈值为30% - 97%,该列线图可应用于临床实践。

结论

这个新颖的列线图纳入了交通方式、糖尿病史、中风症状知晓情况和溶栓治疗,方便应用于促进中国上海农村地区MaRAIS患者个体的晚期入院风险预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验