Suppr超能文献

使用深度放射状卷积神经网络的快速 4D-MRI 重建:Dracula。

Rapid 4D-MRI reconstruction using a deep radial convolutional neural network: Dracula.

机构信息

Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.

Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, The Netherlands.

出版信息

Radiother Oncol. 2021 Jun;159:209-217. doi: 10.1016/j.radonc.2021.03.034. Epub 2021 Apr 2.

Abstract

BACKGROUND AND PURPOSE

4D and midposition MRI could inform plan adaptation in lung and abdominal MR-guided radiotherapy. We present deep learning-based solutions to overcome long 4D-MRI reconstruction times while maintaining high image quality and short scan times.

METHODS

Two 3D U-net deep convolutional neural networks were trained to accelerate the 4D joint MoCo-HDTV reconstruction. For the first network, gridded and joint MoCo-HDTV-reconstructed 4D-MRI were used as input and target data, respectively, whereas the second network was trained to directly calculate the midposition image. For both networks, input and target data had dimensions of 256 × 256 voxels (2D) and 16 respiratory phases. Deep learning-based MRI were verified against joint MoCo-HDTV-reconstructed MRI using the structural similarity index (SSIM) and the naturalness image quality evaluator (NIQE). Moreover, two experienced observers contoured the gross tumour volume and scored the images in a blinded study.

RESULTS

For 12 subjects, previously unseen by the networks, high-quality 4D and midposition MRI (1.25 × 1.25 × 3.3 mm) were each reconstructed from gridded images in only 28 seconds per subject. Excellent agreement was found between deep-learning-based and joint MoCo-HDTV-reconstructed MRI (average SSIM ≥ 0.96, NIQE scores 7.94 and 5.66). Deep-learning-based 4D-MRI were clinically acceptable for target and organ-at-risk delineation. Tumour positions agreed within 0.7 mm on midposition images.

CONCLUSION

Our results suggest that the joint MoCo-HDTV and midposition algorithms can each be approximated by a deep convolutional neural network. This rapid reconstruction of 4D and midposition MRI facilitates online treatment adaptation in thoracic or abdominal MR-guided radiotherapy.

摘要

背景与目的

4D 和中位置 MRI 可以为肺部和腹部 MR 引导放疗的计划适应性提供信息。我们提出了基于深度学习的解决方案,以克服长时间的 4D-MRI 重建时间,同时保持高图像质量和短扫描时间。

方法

训练了两个 3D U-net 深度卷积神经网络来加速 4D 联合 MoCo-HDTV 重建。第一个网络使用网格化和联合 MoCo-HDTV 重建的 4D-MRI 作为输入和目标数据,而第二个网络则被训练来直接计算中位置图像。对于两个网络,输入和目标数据的尺寸均为 256×256 体素(2D)和 16 个呼吸相。使用结构相似性指数(SSIM)和自然图像质量评估器(NIQE)对基于深度学习的 MRI 进行验证,以对抗联合 MoCo-HDTV 重建的 MRI。此外,两名经验丰富的观察者在盲法研究中对肿瘤体积进行了轮廓勾画,并对图像进行了评分。

结果

对于之前未被网络看到的 12 名患者,每个患者仅用 28 秒即可从网格化图像重建高质量的 4D 和中位置 MRI(1.25×1.25×3.3mm)。基于深度学习的 MRI 与联合 MoCo-HDTV 重建的 MRI 之间存在极好的一致性(平均 SSIM≥0.96,NIQE 分数分别为 7.94 和 5.66)。基于深度学习的 4D-MRI 可用于靶区和危及器官的勾画。在中位置图像上,肿瘤位置的一致性在 0.7mm 以内。

结论

我们的结果表明,联合 MoCo-HDTV 和中位置算法都可以由深度卷积神经网络来近似。这种快速重建 4D 和中位置 MRI 有助于在胸部或腹部 MR 引导放疗中进行在线治疗适应性调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d123/8216429/78f11f5bb0cd/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验