School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.
Material Simulation and Computing Laboratory Department of Physics, Hebei Normal University of Science & Technology, Qinghuangdao, 066004, P. R. China.
Chem Asian J. 2020 Apr 17;15(8):1290-1295. doi: 10.1002/asia.202000283. Epub 2020 Mar 23.
Organic electrode materials hold great potential for fabricating sustainable energy storage systems, however, the development of organic redox-active moieties for rechargeable aqueous zinc-ion batteries is still at an early stage. Here, we report a bio-inspired riboflavin-based aqueous zinc-ion battery utilizing an isoalloxazine ring as the redox center for the first time. This battery exhibits a high capacity of 145.5 mAh g at 0.01 A g and a long-life stability of 3000 cycles at 5 A g . We demonstrate that isoalloxazine moieties are active centers for reversible zinc-ion storage by using optical and photoelectron spectroscopies as well as theoretical calculations. Through molecule-structure tailoring of riboflavin, the obtained alloxazine and lumazine molecules exhibit much higher theoretical capacities of 250.3 and 326.6 mAh g , respectively. Our work offers an effective redox-active moiety for aqueous zinc batteries and will enrich the valuable material pool for electrode design.
有机电极材料在构建可持续储能系统方面具有巨大潜力,然而,用于可再充电水系锌离子电池的有机氧化还原活性基团的发展仍处于早期阶段。在这里,我们首次报道了一种基于生物灵感的核黄素基水系锌离子电池,其使用异咯嗪环作为氧化还原中心。该电池在 0.01 A g 时表现出 145.5 mAh g 的高容量和在 5 A g 时 3000 次循环的长寿命稳定性。我们通过光学和光电子光谱以及理论计算证明,异咯嗪基团是可逆锌离子存储的活性中心。通过核黄素的分子结构剪裁,得到的吖嗪和蝶啶分子分别表现出 250.3 和 326.6 mAh g 的更高理论容量。我们的工作为水系锌电池提供了有效的氧化还原活性基团,并丰富了电极设计的有价值的材料库。