Wu Kedi, Blei Mark, Chen Bin, Liu Lei, Cai Hui, Brayfield Cassondra, Wright David, Zhuang Houlong, Tongay Sefaattin
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ, 85287, USA.
Adv Mater. 2020 Apr;32(17):e2000018. doi: 10.1002/adma.202000018. Epub 2020 Mar 13.
Alloying selected layered transitional metal trichalcogenides (TMTCs) with unique chain-like structures offers the opportunities for structural, optical, and electrical engineering thus expands the regime of this class of pseudo-one-dimensional materials. Here, the novel phase transition in anisotropic Nb Ti S alloys is demonstrated for the first time. Results show that Nb Ti S can be fully alloyed across the entire composition range from triclinic-phase NbS to monoclinic-phase TiS . Surprisingly, incorporation of a small concentration of Ti (x ≈ 0.05-0.18) into NbS host matrix is sufficient to induce triclinic to monoclinic transition. Theoretical studies suggest that Ti atoms effectively introduce hole doping, thus rapidly decreases the total energy of monoclinic phase and induces the phase transition. When alloyed, crystalline and optical anisotropy are largely preserved as evidenced by high resolution transmission electron microscopy and angle-resolved Raman spectroscopy. Further Raman measurements identify Raman modes to determine crystalline anisotropy direction and offer insights into the degree of anisotropy. Overall results introduce Nb Ti S as a new and easy phase change material and mark the first phase engineering in anisotropic van der Waals (vdW) trichalcogenide systems for their potential applications in two-dimensional superconductivity, electronics, photonics, and information technologies.
将具有独特链状结构的选定层状过渡金属硫属化物(TMTCs)进行合金化,为结构、光学和电气工程提供了机会,从而扩展了这类准一维材料的范围。在此,首次展示了各向异性的Nb Ti S合金中的新型相变。结果表明,Nb Ti S在从三斜相NbS到单斜相TiS的整个成分范围内都能完全合金化。令人惊讶的是,在NbS主体基质中掺入少量的Ti(x≈0.05 - 0.18)就足以诱导三斜相到单斜相的转变。理论研究表明,Ti原子有效地引入了空穴掺杂,从而迅速降低了单斜相的总能量并诱导了相变。合金化时,高分辨率透射电子显微镜和角分辨拉曼光谱表明,晶体和光学各向异性在很大程度上得以保留。进一步的拉曼测量确定了拉曼模式,以确定晶体各向异性方向,并深入了解各向异性程度。总体结果将Nb Ti S引入为一种新型且易于实现相变的材料,并标志着在各向异性范德华(vdW)硫属化物系统中的首次相工程,因其在二维超导、电子学、光子学和信息技术中的潜在应用。