Suppr超能文献

钴小分子酶催化析氢反应的缓冲依赖调控机制。

Tuning Mechanism through Buffer Dependence of Hydrogen Evolution Catalyzed by a Cobalt Mini-enzyme.

机构信息

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 45, 80126 Naples, Italy.

出版信息

Biochemistry. 2020 Mar 31;59(12):1289-1297. doi: 10.1021/acs.biochem.0c00060. Epub 2020 Mar 19.

Abstract

Cobalt-mimochrome VIa (CoMC6a) is a synthetic mini-protein that catalyzes aqueous proton reduction to hydrogen (H). In buffered water, there are multiple possible proton donors, complicating the elucidation of the mechanism. We have found that the buffer p and sterics have significant effects on activity, evaluated via cyclic voltammetry (CV). Protonated buffer is proposed to act as the primary proton donor to the catalyst, specifically through the protonated amine of the buffers that were tested. At a constant pH of 6.5, catalytic H evolution in the presence of buffer acids with p values ranging from 5.8 to 11.6 was investigated, giving rise to a potential-p relationship that can be divided into two regions. For acids with p values of ≤8.7, the half-wave catalytic potential () changes as a function of p with a slope of -128 mV/p unit, and for acids with p of ≥8.7, changes as a function of p with a slope of -39 mV/p unit. In addition, a series of buffer acids were synthesized to explore the influence of steric bulk around the acidic proton on catalysis. The catalytic current in CV shows a significant decrease in the presence of the sterically hindered buffer acids compared to those of their parent compounds, also consistent with the added buffer acid acting as the primary proton donor to the catalyst and showing that acid structure in addition to p impacts activity. These results demonstrate that buffer acidity and structure are important considerations when optimizing and evaluating systems for proton-dependent catalysis in water.

摘要

钴拟色氨酸 VIa(CoMC6a)是一种合成的小型蛋白质,可催化水相质子还原为氢(H)。在缓冲水中,存在多种可能的质子供体,这使得机制的阐明变得复杂。我们发现,缓冲液 p 值和立体位阻对活性有显著影响,可以通过循环伏安法(CV)进行评估。质子化的缓冲液被认为是催化剂的主要质子供体,具体通过测试的缓冲液的质子化胺来实现。在 pH 值为 6.5 的恒定条件下,研究了在缓冲酸存在下的缓冲液 p 值范围为 5.8 至 11.6 的催化 H 演化,产生了一个可以分为两个区域的电位-关系。对于 p 值≤8.7 的酸,半波催化电位()随 p 值的变化呈-128 mV/p 单位的斜率变化,而对于 p 值≥8.7 的酸,随 p 值的变化呈-39 mV/p 单位的斜率变化。此外,还合成了一系列缓冲酸,以探索酸性质子周围的立体位阻对催化的影响。与母体化合物相比,CV 中的催化电流在存在空间位阻较大的缓冲酸时显著降低,这也与添加的缓冲酸作为催化剂的主要质子供体一致,表明除了 p 值之外,酸的结构也会影响活性。这些结果表明,缓冲酸度和结构是优化和评估水相质子依赖催化系统时需要考虑的重要因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验