Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
J Am Chem Soc. 2020 Apr 1;142(13):6295-6303. doi: 10.1021/jacs.0c00858. Epub 2020 Mar 20.
Supramolecular systems are intrinsically dynamic and sensitive to changes in molecular structure and external conditions. Because of these unique properties, strategies to control polymer length, composition, comonomer sequence, and morphology have to be developed for sufficient control over supramolecular copolymerizations. We designed photoresponsive, mono acyl hydrazone functionalized benzene-1,3,5-tricarboxamide () monomers that play a dual role in the coassembly with achiral alkyl BTAs (). In the isomer form, the chiral monomers intercalate into stacks of and dictate the chirality of the helices. Photoisomerization to the isomer transforms the intercalator into a chain capper, allowing dynamic shortening of chain length in the supramolecular aggregates. We combine optical spectroscopy and light-scattering experiments with theoretical modeling to show the reversible decrease in length when switching from the to isomer of in the copolymer with inert . With a mass-balance thermodynamic model, we gain additional insights into the composition of copolymers and length distributions of the species over a broad range of concentrations and mixing ratios of /. Moreover, the model was used to predict the impact of an additive (chain capper and intercalator) on the chain length over a range of concentrations, showing a remarkable amplification of efficiency at high concentrations. By employing a stimuli-responsive comonomer in a mostly inert polymer, we can cooperatively amplify the effect of the switching and obtain photocontrol of polymer length. Moreover, this dynamic decrease in chain length causes a macroscopic gel-to-sol phase transformation of the copolymer gel, although 99.4% of the organogel is inert to the light stimulus.
超分子体系本质上是动态的,对外界分子结构和条件的变化非常敏感。由于这些独特的性质,必须开发控制聚合物长度、组成、共聚单体序列和形态的策略,以实现对超分子共聚的充分控制。我们设计了光响应的、单酰腙官能化的苯-1,3,5-三甲酰胺()单体,它在与非手性烷基 BTAs()的共组装中起双重作用。在顺式异构体形式中,手性单体插入到和的堆叠中,并决定螺旋的手性。光异构化为反式异构体将插层剂转化为链封端剂,允许超分子聚集体中的链长度动态缩短。我们结合光学光谱和光散射实验以及理论建模,证明了当与惰性共聚时,从单体的顺式异构体到反式异构体的转变会导致共聚物的长度可逆性降低。通过质量平衡热力学模型,我们可以在广泛的浓度和混合比下进一步了解共聚物的组成和物种的长度分布。此外,该模型还用于预测添加剂(链封端剂和插层剂)对浓度范围内链长的影响,在高浓度下显示出显著的效率放大。通过在主要惰性聚合物中使用响应性共聚单体,我们可以协同放大切换的效果,并获得聚合物长度的光控。此外,尽管 99.4%的有机凝胶对光刺激不敏感,但这种链长度的动态降低会导致共聚物凝胶的宏观凝胶到溶胶相转变。