Chen Ming-Cheng, Li Riling, Gan Lin, Zhu Xiaobo, Yang Guangwen, Lu Chao-Yang, Pan Jian-Wei
Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Phys Rev Lett. 2020 Feb 28;124(8):080502. doi: 10.1103/PhysRevLett.124.080502.
Quantum teleportation transfers and processes quantum information through quantum entanglement channels. It is one of the most versatile protocols in quantum information science and leads to many remarkable applications, particularly the one-way quantum computing. Here, we show, for the first time, that the concept of teleportation can also be used to facilitate an important classical computing task, sampling random quantum circuits, which is highly relevant to prove the near-term demonstration of quantum computational supremacy. In our method, the classical computation in the physical-qubit state space is converted to simulate teleportation in logical-qubit state space, resulting in a much smaller number of qubits involved in classical computing. We tested this new method on 1D and 2D lattices up to 1000 qubits. This Letter presents a new quantum-inspired classical computing technology and is helpful to design and optimize classically hard quantum sampling experiments.
量子隐形传态通过量子纠缠通道来传输和处理量子信息。它是量子信息科学中最通用的协议之一,并催生了许多卓越的应用,特别是单向量子计算。在此,我们首次表明,隐形传态的概念还可用于促进一项重要的经典计算任务,即对随机量子电路进行采样,这对于证明量子计算优越性的近期演示具有高度相关性。在我们的方法中,物理量子比特状态空间中的经典计算被转换为逻辑量子比特状态空间中模拟隐形传态,从而使经典计算中涉及的量子比特数量大幅减少。我们在高达1000个量子比特的一维和二维晶格上测试了这种新方法。本信函提出了一种新的受量子启发的经典计算技术,有助于设计和优化传统上困难的量子采样实验。