Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Plant Cell Physiol. 2020 Jun 1;61(6):1064-1079. doi: 10.1093/pcp/pcaa031.
Xyloglucan is a major hemicellulose in plant cell walls and exists in two distinct types, XXXG and XXGG. While the XXXG-type xyloglucan from dicot species only contains O-acetyl groups on side-chain galactose (Gal) residues, the XXGG-type xyloglucan from Poaceae (grasses) and Solanaceae bears O-acetyl groups on backbone glucosyl (Glc) residues. Although O-acetyltransferases responsible for xyloglucan Gal acetylation have been characterized, the biochemical mechanism underlying xyloglucan backbone acetylation remains to be elucidated. In this study, we showed that recombinant proteins of a group of DUF231 members from rice and tomato were capable of transferring acetyl groups onto O-6 of Glc residues in cello-oligomer acceptors, indicating that they are xyloglucan backbone 6-O-acetyltransferases (XyBATs). We further demonstrated that XyBAT-acetylated cellohexaose oligomers could be readily xylosylated by AtXXT1 (Arabidopsis xyloglucan xylosyltransferase 1) to generate acetylated, xylosylated cello-oligomers, whereas AtXXT1-xylosylated cellohexaose oligomers were much less effectively acetylated by XyBATs. Heterologous expression of a rice XyBAT in Arabidopsis led to a severe reduction in cell expansion and plant growth and a drastic alteration in xyloglucan xylosylation pattern with the formation of acetylated XXGG-type units, including XGG, XGGG, XXGG, XXGG,XXGGG and XXGGG (G denotes acetylated Glc). In addition, recombinant proteins of two Arabidopsis XyBAT homologs also exhibited O-acetyltransferase activity toward cellohexaose, suggesting their possible role in mediating xyloglucan backbone acetylation in vivo. Our findings provide new insights into the biochemical mechanism underlying xyloglucan backbone acetylation and indicate the importance of maintaining the regular xyloglucan xylosylation pattern in cell wall function.
木葡聚糖是植物细胞壁中的一种主要半纤维素,存在两种不同类型,XXXG 和 XXGG。虽然双子叶植物物种的 XXXG 型木葡聚糖仅在侧链半乳糖(Gal)残基上含有 O-乙酰基,而禾本科(草类)和茄科的 XXGG 型木葡聚糖在主链葡萄糖基(Glc)残基上含有 O-乙酰基。虽然已经鉴定出负责木葡聚糖 Gal 乙酰化的 O-乙酰基转移酶,但木葡聚糖主链乙酰化的生化机制仍有待阐明。在这项研究中,我们表明来自水稻和番茄的一组 DUF231 成员的重组蛋白能够将乙酰基转移到细胞寡糖受体的 O-6 上的 Glc 残基上,表明它们是木葡聚糖主链 6-O-乙酰基转移酶(XyBAT)。我们进一步证明,XyBAT 乙酰化的纤维六糖寡聚物可以被 AtXXT1(拟南芥木葡聚糖木糖基转移酶 1)轻易地木糖基化,生成乙酰化、木糖基化的纤维寡聚物,而 AtXXT1-木糖基化的纤维六糖寡聚物则很少被 XyBAT 乙酰化。在拟南芥中异源表达一种水稻 XyBAT 导致细胞扩张和植物生长严重减少,以及木葡聚糖木糖基化模式发生剧烈改变,形成乙酰化的 XXGG 型单位,包括 XGG、XGGG、XXGG、XXGG、XXGGG 和 XXGGG(G 表示乙酰化的 Glc)。此外,两种拟南芥 XyBAT 同源物的重组蛋白也对纤维六糖表现出 O-乙酰基转移酶活性,表明它们在体内介导木葡聚糖主链乙酰化中可能发挥作用。我们的发现为木葡聚糖主链乙酰化的生化机制提供了新的见解,并表明维持细胞壁功能中木葡聚糖正常木糖基化模式的重要性。