Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011.
Department of Biochemistry and Molecular Biology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):6064-6069. doi: 10.1073/pnas.1801105115. Epub 2018 May 21.
The plant cell wall is primarily a polysaccharide mesh of the most abundant biopolymers on earth. Although one of the richest sources of biorenewable materials, the biosynthesis of the plant polysaccharides is poorly understood. Structures of many essential plant glycosyltransferases are unknown and suitable substrates are often unavailable for in vitro analysis. The dearth of such information impedes the development of plants better suited for industrial applications. Presented here are structures of xyloglucan xylosyltransferase 1 (XXT1) without ligands and in complexes with UDP and cellohexaose. XXT1 initiates side-chain extensions from a linear glucan polymer by transferring the xylosyl group from UDP-xylose during xyloglucan biosynthesis. XXT1, a homodimer and member of the GT-A fold family of glycosyltransferases, binds UDP analogously to other GT-A fold enzymes. Structures here and the properties of mutant XXT1s are consistent with a SN-like catalytic mechanism. Distinct from other systems is the recognition of cellohexaose by way of an extended cleft. The XXT1 dimer alone cannot produce xylosylation patterns observed for native xyloglucans because of steric constraints imposed by the acceptor binding cleft. Homology modeling of XXT2 and XXT5, the other two xylosyltransferases involved in xyloglucan biosynthesis, reveals a structurally altered cleft in XXT5 that could accommodate a partially xylosylated glucan chain produced by XXT1 and/or XXT2. An assembly of the three XXTs can produce the xylosylation patterns of native xyloglucans, suggesting the involvement of an organized multienzyme complex in the xyloglucan biosynthesis.
植物细胞壁主要是地球上最丰富的生物聚合物多糖网。尽管是生物可再生材料最丰富的来源之一,但植物多糖的生物合成仍知之甚少。许多必需的植物糖基转移酶的结构尚不清楚,并且通常缺乏适合体外分析的合适底物。这种信息的缺乏阻碍了开发更适合工业应用的植物。本文介绍了木葡聚糖木糖基转移酶 1(XXT1)在无配体和与 UDP 和纤维六糖复合物中的结构。XXT1 通过在木葡聚糖生物合成过程中将木糖基从 UDP-木糖转移到线性葡聚糖聚合物上,启动侧链延伸。XXT1 是同源二聚体,属于 GT-A 折叠家族的糖基转移酶,与其他 GT-A 折叠酶类似地结合 UDP。这里的结构和突变 XXT1 的性质与 SN 样催化机制一致。与其他系统不同的是,通过扩展裂缝识别纤维六糖。由于受受体结合裂缝的空间限制,单独的 XXT1 二聚体不能产生天然木葡聚糖中观察到的木糖基化模式。XXT2 和 XXT5 的同源建模,另两种参与木葡聚糖生物合成的木糖基转移酶,揭示了 XXT5 中结构改变的裂缝,该裂缝可以容纳 XXT1 和/或 XXT2 产生的部分木糖基化的葡聚糖链。三个 XXT 的组装可以产生天然木葡聚糖的木糖基化模式,这表明在木葡聚糖生物合成中涉及有组织的多酶复合物。