The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Angew Chem Int Ed Engl. 2020 Sep 1;59(36):15626-15632. doi: 10.1002/anie.202002593. Epub 2020 Apr 20.
We report a simple method based upon coaxial electrospinning for the fabrication of aligned microfibers engraved with nanoscale grooves to promote neurite outgrowth and cell migration. The success of this method relies on the immiscibility between poly(ϵ-caprolactone) (PCL) and poly(vinyl pyrrolidone) (PVP) in 2,2,2-trifluoroethanol (TFE) for the generation of PVP/TFE pockets on the surface of a PCL jet. The pockets are stretched and elongated along with the jet, eventually resulting in the formation of nanoscale grooves upon the removal of PVP. The presence of nanoscale grooves greatly enhances the outgrowth of neurites from both PC12 cells and chick embryonic dorsal root ganglia (DRG) bodies, as well as the migration of Schwann cells. The enhancements can be maximized by optimizing the dimensions of the grooves for potential use in applications involving neurite extension and wound closure.
我们报告了一种基于同轴静电纺丝的简单方法,用于制造刻有纳米级凹槽的定向微纤维,以促进神经突生长和细胞迁移。该方法的成功依赖于聚(ε-己内酯)(PCL)和聚(乙烯基吡咯烷酮)(PVP)在 2,2,2-三氟乙醇(TFE)中的不混溶性,以在 PCL 射流的表面上生成 PVP/TFE 口袋。这些口袋随着射流的拉伸和伸长而被拉伸和伸长,最终在去除 PVP 时形成纳米级凹槽。纳米级凹槽的存在极大地促进了 PC12 细胞和鸡胚背根神经节(DRG)体的神经突生长,以及施万细胞的迁移。通过优化凹槽的尺寸,可以最大限度地提高这些增强效果,以应用于涉及神经突延伸和伤口闭合的领域。