Saadat M H, Bösch F, Karlin I V
Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Phys Rev E. 2020 Feb;101(2-1):023311. doi: 10.1103/PhysRevE.101.023311.
Compressible lattice Boltzmann model on standard lattices [M. H. Saadat, F. Bösch, and I. V. Karlin, Phys. Rev. E 99, 013306 (2019).2470-004510.1103/PhysRevE.99.013306] is extended to deal with complex flows on unstructured grid. Semi-Lagrangian propagation [A. Krämer et al., Phys. Rev. E 95, 023305 (2017).2470-004510.1103/PhysRevE.95.023305] is performed on an unstructured second-order accurate finite-element mesh and a consistent wall boundary condition is implemented which makes it possible to simulate compressible flows over complex geometries. The model is validated through simulation of Sod shock tube, subsonic and supersonic flow over NACA0012 airfoil and shock-vortex interaction in Schardin's problem. Numerical results demonstrate that the present model on standard lattices is able to simulate compressible flows involving shock waves on unstructured meshes with good accuracy and without using any artificial dissipation or limiter.
标准晶格上的可压缩格子玻尔兹曼模型[M. H. 萨adat、F. 博施和I. V. 卡林,《物理评论E》99,013306(2019年)。2470 - 004510.1103/PhysRevE.99.013306]被扩展以处理非结构化网格上的复杂流动。在非结构化二阶精度有限元网格上进行半拉格朗日传播[A. 克雷默等人,《物理评论E》95,023305(2017年)。2470 - 004510.1103/PhysRevE.95.023305],并实现了一致的壁面边界条件,这使得能够模拟复杂几何形状上的可压缩流动。通过对索德激波管、NACA0012翼型上的亚音速和超音速流动以及沙尔丁问题中的激波 - 涡相互作用进行模拟来验证该模型。数值结果表明,标准晶格上的当前模型能够在不使用任何人工耗散或限制器的情况下,高精度地模拟非结构化网格上涉及激波的可压缩流动。