Suppr超能文献

格子玻尔兹曼模型在标准格子上的可压缩流:可变普朗特数和绝热指数。

Lattice Boltzmann model for compressible flows on standard lattices: Variable Prandtl number and adiabatic exponent.

机构信息

Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.

出版信息

Phys Rev E. 2019 Jan;99(1-1):013306. doi: 10.1103/PhysRevE.99.013306.

Abstract

A lattice Boltzmann model for compressible flows on standard lattices is developed and analyzed. A consistent two-population thermal lattice Boltzmann is used which allows a variable Prandtl number and a variable adiabatic exponent, and appropriate correction terms are introduced into the kinetic equations to compensate for deviations in the hydrodynamic limit. Using the concept of a shifted lattice, the model is extended to supersonic flows involving shock waves, and the shock-vortex interaction problem is simulated to show the accuracy of the proposed model. Numerical results demonstrate that the proposed model is a viable candidate for compressible flow simulations.

摘要

发展并分析了一种适用于标准格点的可压缩流的格子玻尔兹曼模型。使用了一种一致的双种群热格子玻尔兹曼模型,该模型允许可变的普朗特数和绝热指数,并在运动方程中引入适当的修正项来补偿在流体力学极限下的偏差。利用平移格点的概念,将该模型扩展到涉及冲击波的超声速流动,并模拟了冲击波-涡相互作用问题,以展示所提出模型的准确性。数值结果表明,所提出的模型是可压缩流模拟的一种可行选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验