Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Str., 1678, Nicosia, Cyprus.
Microb Cell Fact. 2020 Mar 14;19(1):67. doi: 10.1186/s12934-020-01324-1.
Lupanine is a plant toxin contained in the wastewater of lupine bean processing industries, which could be used for semi-synthesis of various novel high added-value compounds. This paper introduces an environmental friendly process for microbial production of enantiopure lupanine.
Previously isolated P. putida LPK411, R. rhodochrous LPK211 and Rhodococcus sp. LPK311, holding the capacity to utilize lupanine as single carbon source, were employed as biocatalysts for resolution of racemic lupanine. All strains achieved high enantiomeric excess (ee) of L-(-)-lupanine (> 95%), while with the use of LPK411 53% of the initial racemate content was not removed. LPK411 fed with lupanine enantiomers as single substrates achieved 92% of D-(+)-lupanine biodegradation, whereas L-(-)-lupanine was not metabolized. Monitoring the transcriptional kinetics of the luh gene in cultures supplemented with the racemate as well as each of the enantiomers supported the enantioselectivity of LPK411 for D-(+)-lupanine biotransformation, while (trans)-6-oxooctahydro-1H-quinolizine-3-carboxylic acid was detected as final biodegradation product from D-(+)-lupanine use. Ecotoxicological assessment demonstrated that lupanine enantiomers were less toxic to A. fischeri compared to the racemate exhibiting synergistic interaction.
The biological chiral separation process of lupanine presented here constitutes an eco-friendly and low-cost alternative to widely used chemical methods for chiral separation.
羽扇豆碱是羽扇豆加工废水中含有的植物毒素,可用于半合成各种新型高附加值化合物。本文介绍了一种微生物生产对映纯羽扇豆碱的环保工艺。
先前分离出的具有利用羽扇豆碱作为单一碳源能力的恶臭假单胞菌 LPK411、红球菌 LPK211 和 Rhodococcus sp. LPK311 被用作外消旋羽扇豆碱拆分的生物催化剂。所有菌株均实现了 L-(-)-羽扇豆碱的高对映体过量(ee)(>95%),而使用 LPK411 时,53%的初始外消旋体含量未被去除。以羽扇豆碱对映体作为单一底物喂养的 LPK411 实现了 92%的 D-(+)-羽扇豆碱生物降解,而 L-(-)-羽扇豆碱则未被代谢。监测补充外消旋体以及每种对映体的培养物中的 luh 基因转录动力学支持了 LPK411 对 D-(+)-羽扇豆碱生物转化的对映选择性,而(反式)-6-氧代辛烷-1H-喹啉-3-羧酸被检测为 D-(+)-羽扇豆碱使用的最终生物降解产物。生态毒理学评估表明,与表现出协同相互作用的外消旋体相比,羽扇豆碱对映体对发光菌 A. fischeri 的毒性较小。
本文提出的羽扇豆碱的生物手性拆分工艺构成了对广泛使用的手性拆分化学方法的环保且低成本替代方案。