Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan; Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69007 Lyon, France.
Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69007 Lyon, France.
Curr Biol. 2020 Apr 20;30(8):1491-1503.e2. doi: 10.1016/j.cub.2020.02.024. Epub 2020 Mar 12.
Growth variability generates mechanical conflicts in tissues. In plants, cortical microtubules usually align with maximal tensile stress direction, thereby mechanically reinforcing cell walls, and channeling growth rate and direction. How this is achieved remains largely unknown and likely involves microtubule regulators. The NIMA-related microtubule-associated kinase NEK6 phosphorylates tubulin, leading to the depolymerization of a subset of microtubules. We found that cortical microtubules exhibit a hyper-response to mechanical stress in the nek6 mutant. This response contributes to local cell protrusions in slow-growing regions of the nek6 mutant hypocotyl. When growth amplitude is higher, the hyper-alignment of microtubules leads to variable, stop-and-go, phenotypes, resulting in wavy hypocotyl shapes. After gravistimulation or touch, the nek6 mutant also exhibits a hyperbent hypocotyl phenotype, consistent with an enhanced perception of its own deformation. Strikingly, we find that NEK6 exhibits a novel form of polarity, being recruited at the ends of a subset of microtubules at cell edges. This pattern can be modified after local ablation, matching the new maximal tensile stress directions. We propose that NEK6 depolymerizes cortical microtubules that best align with maximal tensile stress to generate a noisier network of microtubules. This prevents an overreaction of microtubules to growth fluctuations and, instead, promotes the buffering of growth variations.
生长的可变性会在组织中产生机械冲突。在植物中,皮层微管通常与最大拉伸应力方向对齐,从而机械地增强细胞壁,并引导生长速度和方向。目前,这一机制在很大程度上仍不清楚,可能涉及微管调节蛋白。NIMA 相关的微管相关激酶 NEK6 磷酸化微管蛋白,导致一部分微管的解聚。我们发现,在 nek6 突变体中,皮层微管对机械应力表现出超反应。这种反应有助于 nek6 突变体下胚轴生长缓慢区域的局部细胞突起。当生长幅度较高时,微管的超对齐会导致微管的生长速度不均匀,出现停停走走的现象,从而导致下胚轴形状呈波浪状。在受到重刺激或触摸后,nek6 突变体也表现出超弯曲的下胚轴表型,这与对自身变形的增强感知一致。引人注目的是,我们发现 NEK6 表现出一种新的极性形式,在细胞边缘的一部分微管末端被招募。这种模式可以在局部消融后进行修改,以匹配新的最大拉伸应力方向。我们提出,NEK6 解聚与最大拉伸应力最佳对齐的皮层微管,以产生一个更嘈杂的微管网络。这可以防止微管对生长波动的过度反应,并促进生长变化的缓冲。