Suppr超能文献

三种不同的糖基化途径参与了细胞壁糖聚合物的修饰。

Three distinct glycosylation pathways are involved in the decoration of cell wall glycopolymers.

机构信息

School of Microbiology, University College Cork, Cork T12 K8AF, Ireland.

Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.

出版信息

J Biol Chem. 2020 Apr 17;295(16):5519-5532. doi: 10.1074/jbc.RA119.010844. Epub 2020 Mar 13.

Abstract

Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall-associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium On the basis of sequence similarities, we first identified three gene pairs, , , and , each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that and are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the genome (_, ) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters resistance to bacteriocin.

摘要

细菌细胞壁中糖聚合物成分的细胞外糖基化修饰有助于其结构的多样性。通常,这种修饰过程的分子机制涉及由十一烯基磷酸(Und-P)糖激活糖基转移酶(Und-P GT)、翻转酶和多跨糖基转移酶(PolM GT)组成的三组分糖基化系统(TGS),专门将糖基残基连接到特定的糖聚合物上。在这里,我们使用生物信息学分析、CRISPR 辅助重组、通过 MALDI-TOF MS 和甲基化分析对细胞壁相关多糖(CWPS)进行结构分析,报道了细菌中的三个这样的系统。基于序列相似性,我们首先鉴定了三个基因对、、和,每个基因对编码一个 Und-P GT 和一个 PolM GT,作为潜在的 TGS 成分候选物。我们的实验结果表明,和分别参与 CWPS 成分鼠李糖和多糖包膜(PSP)上的 Glc 侧链添加,而在脂磷壁酸(LTA)的半乳糖基化中起作用。我们还在基因组中鉴定了一个潜在的翻转酶(_,),并证实它参与了三种细胞壁糖聚合物鼠李糖、PSP 和 LTA 的糖基化,这表明其功能被三个 TGS 共享。最后,我们观察到鼠李糖和 PSP 的葡萄糖基化都可以提高对噬菌体捕食的抗性,而 LTA 的半乳糖基化改变了对细菌素的抗性。

相似文献

1
Three distinct glycosylation pathways are involved in the decoration of cell wall glycopolymers.
J Biol Chem. 2020 Apr 17;295(16):5519-5532. doi: 10.1074/jbc.RA119.010844. Epub 2020 Mar 13.
2
A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in .
J Biol Chem. 2019 Nov 15;294(46):17612-17625. doi: 10.1074/jbc.RA119.009957. Epub 2019 Oct 3.
3
Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of .
mBio. 2017 Sep 12;8(5):e01303-17. doi: 10.1128/mBio.01303-17.
5
Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation.
J Biol Chem. 2018 Mar 2;293(9):3293-3306. doi: 10.1074/jbc.RA117.001614. Epub 2018 Jan 17.
7
Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403.
Carbohydr Res. 2018 Jun 15;462:39-44. doi: 10.1016/j.carres.2018.04.002. Epub 2018 Apr 12.
9
PBP2b Mutations Improve the Growth of Phage-Resistant Lacking Polysaccharide Pellicle.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0210322. doi: 10.1128/aem.02103-22. Epub 2023 May 24.
10
Molecular mechanisms underlying the structural diversity of rhamnose-rich cell wall polysaccharides in lactococci.
J Biol Chem. 2024 Jan;300(1):105578. doi: 10.1016/j.jbc.2023.105578. Epub 2023 Dec 16.

引用本文的文献

1
The gene of lactococcal bacteriophage TP901-1 is involved in DNA release following host adsorption.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0069424. doi: 10.1128/aem.00694-24. Epub 2024 Aug 12.
2
Molecular mechanisms underlying the structural diversity of rhamnose-rich cell wall polysaccharides in lactococci.
J Biol Chem. 2024 Jan;300(1):105578. doi: 10.1016/j.jbc.2023.105578. Epub 2023 Dec 16.
3
PBP2b Mutations Improve the Growth of Phage-Resistant Lacking Polysaccharide Pellicle.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0210322. doi: 10.1128/aem.02103-22. Epub 2023 May 24.
5
Host genetic requirements for DNA release of lactococcal phage TP901-1.
Microb Biotechnol. 2022 Dec;15(12):2875-2889. doi: 10.1111/1751-7915.14156. Epub 2022 Oct 19.
6
Cell wall polysaccharides of Gram positive ovococcoid bacteria and their role as bacteriophage receptors.
Comput Struct Biotechnol J. 2021 Jul 14;19:4018-4031. doi: 10.1016/j.csbj.2021.07.011. eCollection 2021.
7
Modifications of cell wall polymers in Gram-positive bacteria by multi-component transmembrane glycosylation systems.
Curr Opin Microbiol. 2021 Apr;60:24-33. doi: 10.1016/j.mib.2021.01.007. Epub 2021 Feb 9.
8
Cell wall homeostasis in lactic acid bacteria: threats and defences.
FEMS Microbiol Rev. 2020 Sep 1;44(5):538-564. doi: 10.1093/femsre/fuaa021.

本文引用的文献

1
A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in .
J Biol Chem. 2019 Nov 15;294(46):17612-17625. doi: 10.1074/jbc.RA119.009957. Epub 2019 Oct 3.
2
Towards a standardized bioinformatics infrastructure for N- and O-glycomics.
Nat Commun. 2019 Jul 22;10(1):3275. doi: 10.1038/s41467-019-11131-x.
3
Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation.
J Biol Chem. 2018 Mar 2;293(9):3293-3306. doi: 10.1074/jbc.RA117.001614. Epub 2018 Jan 17.
4
Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures.
J Dairy Sci. 2018 Jan;101(1):96-105. doi: 10.3168/jds.2017-13403. Epub 2017 Nov 2.
5
Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of .
mBio. 2017 Sep 12;8(5):e01303-17. doi: 10.1128/mBio.01303-17.
6
Host recognition by lactic acid bacterial phages.
FEMS Microbiol Rev. 2017 Aug 1;41(Supp_1):S16-S26. doi: 10.1093/femsre/fux019.
7
Detecting Prophages by Mitomycin C-Mediated Induction Coupled to Flow Cytometry Analysis.
Front Microbiol. 2017 Jul 19;8:1343. doi: 10.3389/fmicb.2017.01343. eCollection 2017.
8
Genome Sequences of Eight Prophages Isolated from Lactococcus lactis Dairy Strains.
Genome Announc. 2016 Nov 10;4(6):e00906-16. doi: 10.1128/genomeA.00906-16.
9
Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.
FEMS Microbiol Rev. 2016 Jul;40(4):464-79. doi: 10.1093/femsre/fuw006. Epub 2016 Mar 13.
10
Listeria monocytogenes wall teichoic acid decoration in virulence and cell-to-cell spread.
Mol Microbiol. 2016 Sep;101(5):714-30. doi: 10.1111/mmi.13353. Epub 2016 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验