Millennium Institute for Integrative Biology, Santiago, Chile, 7500565.
Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile, 8580745.
Plant Cell. 2020 Jul;32(7):2094-2119. doi: 10.1105/tpc.19.00748. Epub 2020 Mar 13.
Nitrogen (N) is an essential macronutrient for plants and a major limiting factor for plant growth and crop production. Nitrate is the main source of N available to plants in agricultural soils and in many natural environments. Sustaining agricultural productivity is of paramount importance in the current scenario of increasing world population, diversification of crop uses, and climate change. Plant productivity for major crops around the world, however, is still supported by excess application of N-rich fertilizers with detrimental economic and environmental impacts. Thus, understanding how plants regulate nitrate uptake and metabolism is key for developing new crops with enhanced N use efficiency and to cope with future world food demands. The study of plant responses to nitrate has gained considerable interest over the last 30 years. This review provides an overview of key findings in nitrate research, spanning biochemistry, molecular genetics, genomics, and systems biology. We discuss how we have reached our current view of nitrate transport, local and systemic nitrate sensing/signaling, and the regulatory networks underlying nitrate-controlled outputs in plants. We hope this summary will serve not only as a timeline and information repository but also as a baseline to define outstanding questions for future research.
氮(N)是植物必需的大量营养素,是植物生长和作物生产的主要限制因素。硝酸盐是农业土壤和许多自然环境中植物可利用的 N 的主要来源。在当前世界人口不断增加、作物用途多样化和气候变化的情况下,维持农业生产力至关重要。然而,全球主要作物的植物生产力仍然依赖于过量施用富氮肥料,这会带来不利的经济和环境影响。因此,了解植物如何调节硝酸盐的吸收和代谢对于开发具有增强氮利用效率的新型作物以及应对未来的世界粮食需求至关重要。过去 30 年来,人们对植物对硝酸盐的反应产生了浓厚的兴趣。本综述概述了硝酸盐研究的关键发现,涵盖了生物化学、分子遗传学、基因组学和系统生物学。我们讨论了我们如何达到目前对硝酸盐运输、局部和系统硝酸盐感应/信号转导以及硝酸盐控制植物输出的调控网络的认识。我们希望本综述不仅可以作为时间线和信息库,还可以作为定义未来研究中悬而未决问题的基线。