Suppr超能文献

新型瑞替加滨类似物调控 KCNQ2 通道的分子机制和结构基础。

Molecular Mechanisms and Structural Basis of Retigabine Analogues in Regulating KCNQ2 Channel.

机构信息

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China.

Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China.

出版信息

J Membr Biol. 2020 Apr;253(2):167-181. doi: 10.1007/s00232-020-00113-6. Epub 2020 Mar 13.

Abstract

KCNQ2 channel is one of the important members of potassium voltage-gated channel. KCNQ2 is closely related to neuronal excitatory diseases including epilepsy and neuropathic pain, and also acts as a drug target of the anti-epileptic drug, retigabine (RTG). In the past few decades, RTG has shown strong efficacy in the treatment of refractory epilepsy but has been withdrawn from clinical use due to its multiple adverse effects in clinical phase III trials. To overcome the drawbacks of RTG, several RTG analogues have been developed with different activation potency to KCNQ2. However, the detailed molecular mechanism by which these RTG analogues regulate KCNQ2 channel remains obscure. In this study, we used molecular simulations to analyse the interaction mode between the RTG analogues and KCNQ2, and to determine their molecular mechanism of action. Our data show that the van der Waals interactions, hydrophobic interactions, hydrogen bond, halogen bond, and π-π stacking work together to maintain the binding stability of the drugs in the binding pocket. On an atomic scale, the amide group in the carbamate and the amino group in the 2-aminophenyl moiety of RTG and RL648_81 are identified as key interaction sites. Our finding provides insight into the molecular mechanism by which KCNQ2 channels are regulated by RTG analogues. It also provides direct theoretical support for optimizing design of the KCNQ2 channel openers in the future, which will help treat refractory epilepsy caused by nerve excitability.

摘要

KCNQ2 通道是钾电压门控通道的重要成员之一。KCNQ2 与包括癫痫和神经性疼痛在内的神经元兴奋性疾病密切相关,也是抗癫痫药物瑞替加滨 (RTG) 的药物靶点。在过去的几十年中,RTG 在治疗耐药性癫痫方面显示出强大的疗效,但由于其在 III 期临床试验中的多种不良反应而被撤出临床使用。为了克服 RTG 的缺点,已经开发了几种具有不同激活效力的 RTG 类似物作用于 KCNQ2。然而,这些 RTG 类似物调节 KCNQ2 通道的详细分子机制仍不清楚。在这项研究中,我们使用分子模拟来分析 RTG 类似物与 KCNQ2 的相互作用模式,并确定它们的作用机制。我们的数据表明,范德华相互作用、疏水相互作用、氢键、卤键和 π-π 堆积共同维持药物在结合口袋中的结合稳定性。在原子尺度上,鉴定出 RTG 和 RL648_81 中的氨基甲酸酯的酰胺基团和 2-氨基苯基部分的氨基为关键相互作用位点。我们的发现深入了解了 RTG 类似物调节 KCNQ2 通道的分子机制。它还为未来优化 KCNQ2 通道开放剂的设计提供了直接的理论支持,这将有助于治疗由神经兴奋性引起的耐药性癫痫。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验