Suppr超能文献

各种 GABA 调节剂的设计及临床进展的合理方法。

Rational approaches for the design of various GABA modulators and their clinical progression.

机构信息

Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.

Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA.

出版信息

Mol Divers. 2021 Feb;25(1):551-601. doi: 10.1007/s11030-020-10068-4. Epub 2020 Mar 13.

Abstract

GABA (γ-amino butyric acid) is an important inhibitory neurotransmitter in the central nervous system. Attenuation of GABAergic neurotransmission plays an important role in the etiology of several neurological disorders including epilepsy, Alzheimer's disease, Huntington's chorea, migraine, Parkinson's disease, neuropathic pain, and depression. Increase in the GABAergic activity may be achieved through direct agonism at the GABA receptors, inhibition of enzymatic breakdown of GABA, or by inhibition of the GABA transport proteins (GATs). These functionalities make GABA receptor modulators and GATs attractive drug targets in brain disorders associated with decreased GABA activity. There have been several reports of development of GABA modulators (GABA receptors, GABA transporters, and GABAergic enzyme inhibitors) in the past decade. Therefore, the focus of the present review is to provide an overview on various design strategies and synthetic approaches toward developing GABA modulators. Furthermore, mechanistic insights, structure-activity relationships, and molecular modeling inputs for the biologically active derivatives have also been discussed. Summary of the advances made over the past few years in the clinical translation and development of GABA receptor modulators is also provided. This compilation will be of great interest to the researchers working in the field of neuroscience. From the light of detailed literature, it can be concluded that numerous molecules have displayed significant results and their promising potential, clearly placing them ahead as potential future drug candidates.

摘要

γ-氨基丁酸(GABA)是中枢神经系统中一种重要的抑制性神经递质。GABA 能神经传递的减弱在包括癫痫、阿尔茨海默病、亨廷顿舞蹈病、偏头痛、帕金森病、神经性疼痛和抑郁症在内的几种神经疾病的发病机制中起着重要作用。GABA 能活性的增加可以通过 GABA 受体的直接激动、GABA 分解酶的抑制或 GABA 转运蛋白(GATs)的抑制来实现。这些功能使 GABA 受体调节剂和 GATs 成为与 GABA 活性降低相关的脑疾病的有吸引力的药物靶点。在过去的十年中,已经有几篇关于 GABA 调节剂(GABA 受体、GABA 转运体和 GABA 能酶抑制剂)开发的报道。因此,本综述的重点是提供关于开发 GABA 调节剂的各种设计策略和合成方法的概述。此外,还讨论了具有生物活性的衍生物的作用机制、构效关系和分子建模的见解。还提供了过去几年在 GABA 受体调节剂的临床转化和开发方面取得的进展的总结。这一汇编将引起神经科学领域研究人员的极大兴趣。从详细的文献中可以得出结论,许多分子已经显示出显著的结果和有希望的潜力,这显然使它们成为潜在的未来药物候选物。

相似文献

1
Rational approaches for the design of various GABA modulators and their clinical progression.
Mol Divers. 2021 Feb;25(1):551-601. doi: 10.1007/s11030-020-10068-4. Epub 2020 Mar 13.
2
GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators.
Eur J Med Chem. 2019 Jun 1;171:434-461. doi: 10.1016/j.ejmech.2019.03.043. Epub 2019 Mar 23.
3
GABA transporters and GABA-transaminase as drug targets.
Curr Drug Targets CNS Neurol Disord. 2003 Aug;2(4):269-77. doi: 10.2174/1568007033482788.
4
Novel GABA(B) receptor positive modulators: a patent survey.
Expert Opin Ther Pat. 2010 Aug;20(8):1007-17. doi: 10.1517/13543776.2010.506480.
5
GABA system as a target for new drugs.
Curr Med Chem. 2014;21(28):3294-309. doi: 10.2174/0929867321666140601202158.
7
8
Exploiting the Indole Scaffold to Design Compounds Binding to Different Pharmacological Targets.
Molecules. 2020 May 16;25(10):2331. doi: 10.3390/molecules25102331.
9
GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia.
Acta Pharmacol Sin. 2018 May;39(5):733-753. doi: 10.1038/aps.2017.172. Epub 2018 Mar 22.

引用本文的文献

3
A brainstem to hypothalamic arcuate nucleus GABAergic circuit drives feeding.
Curr Biol. 2024 Apr 22;34(8):1646-1656.e4. doi: 10.1016/j.cub.2024.02.074. Epub 2024 Mar 21.
6
A Brief History and the Significance of the GABA Receptor.
Curr Top Behav Neurosci. 2022;52:1-17. doi: 10.1007/7854_2021_264.
7
Focal corticarl dysplasia in epilepsy is associated with GABA increase.
Neuroimage Clin. 2021;31:102763. doi: 10.1016/j.nicl.2021.102763. Epub 2021 Jul 14.
8
Antiepileptic effects of exogenous β-hydroxybutyrate on kainic acid-induced epilepsy.
Exp Ther Med. 2020 Dec;20(6):177. doi: 10.3892/etm.2020.9307. Epub 2020 Oct 9.
9
Tailored Quinolines Demonstrate Flexibility to Exert Antitumor Effects through Varied Mechanisms-A Medicinal Perspective.
Anticancer Agents Med Chem. 2021;21(3):288-315. doi: 10.2174/1871520620666200908104303.

本文引用的文献

2
GABA receptor: Positive and negative allosteric modulators.
Neuropharmacology. 2018 Jul 1;136(Pt A):10-22. doi: 10.1016/j.neuropharm.2018.01.036. Epub 2018 Jan 31.
4
In Vivo Detection of CPP-115 Target Engagement in Human Brain.
Neuropsychopharmacology. 2018 Feb;43(3):646-654. doi: 10.1038/npp.2017.156. Epub 2017 Jul 25.
5
Binding site opening by loop C shift and chloride ion-pore interaction in the GABA receptor model.
Phys Chem Chem Phys. 2017 May 31;19(21):13664-13678. doi: 10.1039/c7cp00582b.
8
Mechanism of action of antiepileptic ceramide from Red Sea soft coral Sarcophyton auritum.
Bioorg Med Chem Lett. 2015 Dec 15;25(24):5819-24. doi: 10.1016/j.bmcl.2015.08.039.
9
Nitrogenated honokiol derivatives allosterically modulate GABAA receptors and act as strong partial agonists.
Bioorg Med Chem. 2015 Oct 15;23(20):6757-62. doi: 10.1016/j.bmc.2015.08.034. Epub 2015 Aug 28.
10
Expedient one-pot synthesis of indolo[3,2-]isoquinolines via a base-promoted -alkylation/tandem cyclization.
Tetrahedron Lett. 2015 Sep 30;56(40):5429-5433. doi: 10.1016/j.tetlet.2015.08.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验