Suppr超能文献

黎巴嫩北部阿布阿里河水资源中农药的时空分布及生态风险评估。

Spatio-temporal distribution and ecological risk assessment of pesticides in the water resources of Abou Ali River, Northern Lebanon.

机构信息

Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515 Groupe de Physico-Chimie de l'Atmosphère, Université de Strasbourg, 67081, Strasbourg, France.

Environmental Engineering Laboratory: Faculty of Engineering, Civil and Environmental Engineering Department, University of Balamand, Kelhat, El Koura, Lebanon.

出版信息

Environ Sci Pollut Res Int. 2020 May;27(15):17997-18012. doi: 10.1007/s11356-020-08089-5. Epub 2020 Mar 13.

Abstract

The objective of this study is to assess the occurrence, spatial, and temporal distribution of forty-eight multiclass pesticides in surface and groundwater samples of the Abou Ali River, located in the North of Lebanon. A 3-year monitoring program (six batches from August 2015 to March 2017) was implemented, and thirty sampling points were selected along the river for analysis. The analysis was executed using a previously developed and optimized solid-phase micro-extraction (SPME) gas-chromatography-mass spectrometry (GC-MS) method. Statistical analysis, using Kolmogorov-Smirnov, Kruskal-Wallis, and Dunnet T3 multiple comparison tests, was applied to compare mean concentrations of pesticides between the different sampling sites and the batches taken. The pesticides that had the highest frequency of detection in the surface and groundwater samples were alachlor, α-endosulfan, and methomyl. For surface water samples, high mean concentrations were perceived for two stations in the upper stream (S5 and S7), two stations (S11 and S14) in the middle stream, and one station (S16) in the lower stream of the river. The highest mean concentrations were observed in October 2015 and August 2016, the time of the year which correlates with the period of pesticide application. Considering groundwater samples, high mean concentrations of pesticides were detected in sites G4, G9, G10, and G12 and during October 2015 and March 2016, following the rainy season. Ecotoxicological risk assessment using the risk quotient (RQ) methodology revealed high risk for five pesticides under average conditions and fourteen under extreme conditions. This study presents, for the first time, a statistical analysis showing the quantification of pesticides in the water resources of the Abou Ali River. In conclusion, it reveals the need to apply a complete pesticide monitoring program, not only for the Abou Ali River but for all the water resources in Lebanon.

摘要

本研究旨在评估四十八种多类农药在黎巴嫩北部阿布阿里河地表水和地下水中的发生、空间和时间分布。实施了为期三年的监测计划(2015 年 8 月至 2017 年 3 月共六批),在河流沿线选择了 30 个采样点进行分析。分析采用了先前开发并优化的固相微萃取(SPME)-气相色谱-质谱(GC-MS)方法。使用 Kolmogorov-Smirnov、Kruskal-Wallis 和 Dunnett T3 多重比较检验对统计数据进行分析,以比较不同采样点和批次之间农药的平均浓度。在地表水和地下水中检测频率最高的农药是甲草胺、α-硫丹和灭多威。对于地表水样本,上游两个站(S5 和 S7)、中游两个站(S11 和 S14)和下游一个站(S16)的浓度较高。最高的平均浓度出现在 2015 年 10 月和 2016 年 8 月,这与农药施用期相对应。考虑到地下水样本,在 G4、G9、G10 和 G12 站点以及 2015 年 10 月和 2016 年 3 月雨季期间检测到农药的高平均浓度。使用风险商(RQ)方法进行生态毒理学风险评估显示,在平均条件下有 5 种农药和在极端条件下有 14 种农药具有高风险。本研究首次进行了统计分析,显示了阿布阿里河水资源中农药的定量情况。总之,它表明不仅需要在阿布阿里河,而且需要在黎巴嫩所有的水资源中应用全面的农药监测计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验