Suppr超能文献

使用邻二硫醇蛋白靶向探针的线粒体动力学的STORM成像

STORM imaging of mitochondrial dynamics using a vicinal-dithiol-proteins-targeted probe.

作者信息

Chen Bingling, Gong Wanjun, Yang Zhigang, Pan Wenhui, Verwilst Peter, Shin Jinwoo, Yan Wei, Liu Liwei, Qu Junle, Kim Jong Seung

机构信息

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

出版信息

Biomaterials. 2020 Jun;243:119938. doi: 10.1016/j.biomaterials.2020.119938. Epub 2020 Mar 7.

Abstract

Stochastic optical reconstruction microscopy (STORM) is a promising method for the visualization of ultra-fine mitochondrial structures. However, this approach is limited to monitoring dynamic intracellular events owing to its low temporal resolution. We developed a new strategy to capture mitochondrial dynamics using a compressed sensing STORM algorithm following raw data pre-treatments by a noise-corrected principal component analysis and K-factor image factorization. Using STORM microscopy with a vicinal-dithiol-proteins targeting probe, visualizing mitochondrial dynamics was attainable with spatial and temporal resolutions of 45 nm and 0.8 s, notably, dynamic mitochondrial tubulation retraction of ~746 nm in 1.2 s was monitored. The labeled conjugate was observed as clusters (radii, ~90 nm) distributed on the outer mitochondrial membranes, not yet reported as far as we know. This strategy is promising for the quantitative analysis of intracellular behaviors below the optical diffraction limit.

摘要

随机光学重建显微镜(STORM)是一种用于可视化超细微线粒体结构的有前景的方法。然而,由于其时间分辨率低,这种方法仅限于监测动态细胞内事件。我们开发了一种新策略,通过噪声校正主成分分析和K因子图像分解对原始数据进行预处理后,使用压缩感知STORM算法来捕获线粒体动力学。使用带有邻二硫醇蛋白靶向探针的STORM显微镜,可以实现45纳米的空间分辨率和0.8秒的时间分辨率来可视化线粒体动力学,值得注意的是,监测到了在1.2秒内约746纳米的线粒体动态微管收缩。标记的共轭物被观察为分布在线粒体外膜上的簇(半径约90纳米),据我们所知,尚未有相关报道。这种策略对于低于光学衍射极限的细胞内行为的定量分析很有前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验