Suppr超能文献

理解健康与疾病中的运动控制:经典的单一(n = 1)观察。

Understanding motor control in health and disease: classic single (n = 1) observations.

机构信息

Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, PO Box 9101 (947), 6500 HB, Nijmegen, The Netherlands.

HM-CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, 28938, Móstoles, Madrid, Spain.

出版信息

Exp Brain Res. 2020 Aug;238(7-8):1593-1600. doi: 10.1007/s00221-020-05763-5. Epub 2020 Mar 14.

Abstract

The field of neuroscience is increasingly dominated by a preferred use of big data, where analysis of large numbers has become an essential area of development. We here draw attention to the importance of smaller numbers, and more specifically, to the historical and continued importance of detailed and judiciously performed studies in single healthy volunteers or single patients with a unique clinical presentation, as an important approach to study normal functions of the nervous system, and to understand the pathophysiology underlying neurological movement disorders. We illustrate this by discussing several historical examples and by summarising Professor John Rothwell's impressive body of work in single-patient studies, highlighting some of his seminal n = 1 studies that have had a great impact on the field. In doing so, we hope to provide a powerful incentive for the next generation of neuroscientists to keep appreciating the value of detailed analyses of single observations.

摘要

神经科学领域越来越多地以大数据的首选使用为主导,大量数据分析已成为一个重要的发展领域。我们在这里提请注意较小数字的重要性,更具体地说,提请注意在单个健康志愿者或具有独特临床表现的单个患者中进行详细和明智的研究的历史和持续重要性,这是研究神经系统正常功能和理解神经运动障碍基础病理生理学的重要方法。我们通过讨论几个历史实例来说明这一点,并总结了 John Rothwell 教授在单患者研究中的令人印象深刻的工作,强调了他的一些开创性的 n=1 研究,这些研究对该领域产生了重大影响。通过这样做,我们希望为下一代神经科学家提供一个强大的动力,让他们继续欣赏对单个观察结果进行详细分析的价值。

相似文献

1
Understanding motor control in health and disease: classic single (n = 1) observations.
Exp Brain Res. 2020 Aug;238(7-8):1593-1600. doi: 10.1007/s00221-020-05763-5. Epub 2020 Mar 14.
2
The continued need for scientific monographs: an appreciation of John Rothwell's "Control of human voluntary movement".
Exp Brain Res. 2020 Aug;238(7-8):1715-1717. doi: 10.1007/s00221-020-05778-y. Epub 2020 Mar 26.
3
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Chapter 33: the history of movement disorders.
Handb Clin Neurol. 2010;95:501-46. doi: 10.1016/S0072-9752(08)02133-7.
5
How does the brain create rhythms?
Ideggyogy Sz. 2010 Jan 30;63(1-2):13-23.
6
Movement skills proficiency and physical activity: a case for Engaging and Coaching for Health (EACH)-Child.
Aust Occup Ther J. 2009 Aug;56(4):259-65. doi: 10.1111/j.1440-1630.2008.00758.x.
7
Impairment of motor dexterity in schizophrenia assessed by a novel finger movement test.
Psychiatry Res. 2008 Jun 30;159(3):281-9. doi: 10.1016/j.psychres.2007.04.004. Epub 2008 Apr 29.
8
State anxiety disorganizes finger movements during musical performance.
J Neurophysiol. 2018 Aug 1;120(2):439-451. doi: 10.1152/jn.00813.2017. Epub 2018 Apr 11.
9
Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes.
Lancet Neurol. 2005 Oct;4(10):618-26. doi: 10.1016/S1474-4422(05)70171-X.

引用本文的文献

1
Soft robotic apparel to avert freezing of gait in Parkinson's disease.
Nat Med. 2024 Jan;30(1):177-185. doi: 10.1038/s41591-023-02731-8. Epub 2024 Jan 5.
2
The Apparent Impunity of the Basal Ganglia to Therapeutic Lesioning: Clinical and Scientific Lessons.
Mov Disord Clin Pract. 2023 Jun 21;10(Suppl 2):S42-S46. doi: 10.1002/mdc3.13787. eCollection 2023 Aug.
3
Cortical Re-organization After Traumatic Brain Injury Elicited Using Functional Electrical Stimulation Therapy: A Case Report.
Front Neurosci. 2021 Aug 19;15:693861. doi: 10.3389/fnins.2021.693861. eCollection 2021.

本文引用的文献

1
Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson's disease: a double-blind, randomised controlled trial.
Lancet Neurol. 2019 Nov;18(11):998-1008. doi: 10.1016/S1474-4422(19)30285-6. Epub 2019 Sep 11.
2
Predicting diagnosis of Parkinson's disease: A risk algorithm based on primary care presentations.
Mov Disord. 2019 Apr;34(4):480-486. doi: 10.1002/mds.27616. Epub 2019 Feb 8.
3
The Emerging Evidence of the Parkinson Pandemic.
J Parkinsons Dis. 2018;8(s1):S3-S8. doi: 10.3233/JPD-181474.
5
Network analysis of symptoms in a Parkinson patient using experience sampling data: An n = 1 study.
Mov Disord. 2018 Dec;33(12):1938-1944. doi: 10.1002/mds.93. Epub 2018 Oct 4.
6
Big Data and Machine Learning in Health Care.
JAMA. 2018 Apr 3;319(13):1317-1318. doi: 10.1001/jama.2017.18391.
7
Prediction of cognition in Parkinson's disease with a clinical-genetic score: a longitudinal analysis of nine cohorts.
Lancet Neurol. 2017 Aug;16(8):620-629. doi: 10.1016/S1474-4422(17)30122-9. Epub 2017 Jun 16.
9
Aligning incentives to fulfil the promise of personalised medicine.
Lancet. 2015 May 23;385(9982):2118-9. doi: 10.1016/S0140-6736(15)60722-X. Epub 2015 May 6.
10
Personalized medicine: Time for one-person trials.
Nature. 2015 Apr 30;520(7549):609-11. doi: 10.1038/520609a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验