Liu Ganqiang, Locascio Joseph J, Corvol Jean-Christophe, Boot Brendon, Liao Zhixiang, Page Kara, Franco Daly, Burke Kyle, Jansen Iris E, Trisini-Lipsanopoulos Ana, Winder-Rhodes Sophie, Tanner Caroline M, Lang Anthony E, Eberly Shirley, Elbaz Alexis, Brice Alexis, Mangone Graziella, Ravina Bernard, Shoulson Ira, Cormier-Dequaire Florence, Heutink Peter, van Hilten Jacobus J, Barker Roger A, Williams-Gray Caroline H, Marinus Johan, Scherzer Clemens R
Neurogenomics Laboratory and Parkinson Personalized Medicine Program of Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
Neurogenomics Laboratory and Parkinson Personalized Medicine Program of Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
Lancet Neurol. 2017 Aug;16(8):620-629. doi: 10.1016/S1474-4422(17)30122-9. Epub 2017 Jun 16.
Cognitive decline is a debilitating manifestation of disease progression in Parkinson's disease. We aimed to develop a clinical-genetic score to predict global cognitive impairment in patients with the disease.
In this longitudinal analysis, we built a prediction algorithm for global cognitive impairment (defined as Mini Mental State Examination [MMSE] ≤25) using data from nine cohorts of patients with Parkinson's disease from North America and Europe assessed between 1986 and 2016. Candidate predictors of cognitive decline were selected through a backward eliminated Cox's proportional hazards analysis using the Akaike's information criterion. These were used to compute the multivariable predictor on the basis of data from six cohorts included in a discovery population. Independent replication was attained in patients from a further three independent longitudinal cohorts. The predictive score was rebuilt and retested in 10 000 training and test sets randomly generated from the entire study population.
3200 patients with Parkinson's disease who were longitudinally assessed with 27 022 study visits between 1986 and 2016 in nine cohorts from North America and Europe were assessed for eligibility. 235 patients with MMSE ≤25 at baseline and 135 whose first study visit occurred more than 12 years from disease onset were excluded. The discovery population comprised 1350 patients (after further exclusion of 334 with missing covariates) from six longitudinal cohorts with 5165 longitudinal visits over 12·8 years (median 2·8, IQR 1·6-4·6). Age at onset, baseline MMSE, years of education, motor exam score, sex, depression, and β-glucocerebrosidase (GBA) mutation status were included in the prediction model. The replication population comprised 1132 patients (further excluding 14 patients with missing covariates) from three longitudinal cohorts with 19 127 follow-up visits over 8·6 years (median 6·5, IQR 4·1-7·2). The cognitive risk score predicted cognitive impairment within 10 years of disease onset with an area under the curve (AUC) of more than 0·85 in both the discovery (95% CI 0·82-0·90) and replication (95% CI 0·78-0·91) populations. Patients scoring in the highest quartile for cognitive risk score had an increased hazard for global cognitive impairment compared with those in the lowest quartile (hazard ratio 18·4 [95% CI 9·4-36·1]). Dementia or disabling cognitive impairment was predicted with an AUC of 0·88 (95% CI 0·79-0·94) and a negative predictive value of 0·92 (95% 0·88-0·95) at the predefined cutoff of 0·196. Performance was stable in 10 000 randomly resampled subsets.
Our predictive algorithm provides a potential test for future cognitive health or impairment in patients with Parkinson's disease. This model could improve trials of cognitive interventions and inform on prognosis.
National Institutes of Health, US Department of Defense.
认知功能衰退是帕金森病疾病进展的一种使人衰弱的表现。我们旨在开发一种临床遗传评分,以预测帕金森病患者的整体认知障碍。
在这项纵向分析中,我们利用1986年至2016年间对来自北美和欧洲的9个帕金森病患者队列进行评估的数据,构建了一种针对整体认知障碍(定义为简易精神状态检查表[MMSE]≤25)的预测算法。通过使用赤池信息准则的向后逐步淘汰Cox比例风险分析,选择认知衰退的候选预测因素。这些因素被用于根据纳入发现人群的6个队列的数据计算多变量预测指标。在另外3个独立的纵向队列的患者中进行了独立验证。在从整个研究人群中随机生成的10000个训练集和测试集中重新构建并重新测试预测评分。
对1986年至2016年间在北美和欧洲的9个队列中接受纵向评估的3200例帕金森病患者进行了资格评估,共进行了27022次研究随访。排除了235例基线时MMSE≤25的患者以及135例首次研究随访发生在疾病发作12年以上的患者。发现人群包括来自6个纵向队列的1350例患者(进一步排除334例协变量缺失的患者),在12.8年期间进行了5165次纵向随访(中位数2.8,四分位间距1.6 - 4.6)。预测模型纳入了发病年龄、基线MMSE、受教育年限、运动检查评分、性别、抑郁以及β-葡萄糖脑苷脂酶(GBA)突变状态。验证人群包括来自3个纵向队列的1132例患者(进一步排除14例协变量缺失的患者),在8.6年期间进行了19127次随访(中位数6.5,四分位间距4.1 - 7.2)。认知风险评分在疾病发作10年内预测认知障碍的曲线下面积(AUC)在发现人群(95%CI 0.82 - 至0.90)和验证人群(95%CI 0.78 - 0.91)中均超过0.85。认知风险评分处于最高四分位数的患者与最低四分位数的患者相比,整体认知障碍的风险增加(风险比18.4[95%CI 9.4 - 36.1])。在预定义的截断值0.196时,预测痴呆或致残性认知障碍的AUC为0.88(95%CI 0.79 - 0.94),阴性预测值为0.92(95% 0.88 - 0.95)。在10000个随机重采样子集中,性能稳定。
我们的预测算法为帕金森病患者未来的认知健康或障碍提供了一种潜在的检测方法。该模型可以改善认知干预试验并为预后提供信息。
美国国立卫生研究院、美国国防部。