The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, PR China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China.
School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China.
Biochem Biophys Res Commun. 2020 May 14;525(4):989-996. doi: 10.1016/j.bbrc.2020.03.030. Epub 2020 Mar 12.
Genes and environmental conditions are thought to interact in the development of postnatal brain in schizophrenia (SZ). Genome wide association studies have identified that PPARGC1A being one of the top candidate genes for SZ. We previously reported GABAergic neuron-specific PGC-1α knockout mice (Dlx5/6-Cre:PGC-1α) presented some characteristic features of SZ. However, there is a fundamental gap of the molecular mechanism by which PGC-1α gene involved in the developmental trajectory to SZ. To explore whether PGC-1α regulates environmental factors interacting with genetic susceptibility to trigger symptom onset and disease progression, PGC-1α deficient mice were utilized to model genetic effect and an additional oxidative stress was induced by GBR injection. We confirm that PGC-1α gene deletion prolongs critical period (CP) timing, as revealed by delaying maturation of PV interneurons (PVIs), including their perineuronal nets (PNNs). Further, we confirm that gene × environment (G × E) influences CP plasticity synergistically and the interaction varies as a function of age, with the most sensitive period being at preweaning stage, and the least sensitive one at early adult age in PGC-1α deficient mice. Along this line, we find that the synergic action of G × E is available in ChABC-infusion PGC-1α KO mice, even though during the adulthood, and the neuroplasticity seems to remain open to fluctuate. Altogether, these results refine the observations made in the PGC-1α deficient mice, a potential mouse model of SZ, and illustrate how PGC-1α regulates CP plasticity via G × E interaction in the developmental trajectory to SZ.
基因和环境条件被认为在精神分裂症(SZ)的产后大脑发育中相互作用。全基因组关联研究已经确定过氧化物酶体增殖物激活受体γ共激活因子 1α(PPARGC1A)是 SZ 的顶级候选基因之一。我们之前报道过 GABA 能神经元特异性 PGC-1α 敲除小鼠(Dlx5/6-Cre:PGC-1α)表现出一些 SZ 的特征。然而,PGC-1α 基因如何参与到 SZ 的发育轨迹中,其分子机制仍然存在根本差距。为了探索 PGC-1α 是否调节与遗传易感性相互作用的环境因素,以引发症状发作和疾病进展,我们利用 PGC-1α 缺失小鼠来模拟遗传效应,并通过 GBR 注射诱导额外的氧化应激。我们证实 PGC-1α 基因缺失会延长关键期(CP)时间,这表现为 PV 中间神经元(PVIs)的成熟延迟,包括它们的周围神经网(PNNs)。此外,我们证实基因×环境(G×E)协同影响 CP 可塑性,并且这种相互作用随着年龄的变化而变化,在 PGC-1α 缺失小鼠中,最敏感的时期是在断奶前阶段,最不敏感的时期是在成年早期。沿着这条线,我们发现即使在成年期,ChABC 输注 PGC-1α KO 小鼠中也存在 G×E 的协同作用,并且神经可塑性似乎仍然保持开放以波动。总而言之,这些结果细化了在 PGC-1α 缺失小鼠中的观察结果,即 SZ 的一种潜在小鼠模型,并说明了 PGC-1α 如何通过 G×E 相互作用调节 CP 可塑性,从而影响 SZ 的发育轨迹。