Suppr超能文献

构建中文膝关节骨关节炎知识图谱的自动方法。

Automatic approach for constructing a knowledge graph of knee osteoarthritis in Chinese.

作者信息

Li Xin, Liu Haoyang, Zhao Xu, Zhang Guigang, Xing Chunxiao

机构信息

1Department of Rehabilitation, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing, China.

2Beijing University of Posts and Telecommunications, Beijing, China.

出版信息

Health Inf Sci Syst. 2020 Feb 27;8(1):12. doi: 10.1007/s13755-020-0102-4. eCollection 2020 Dec.

Abstract

In this study, a medical knowledge graph is constructed from the electronic medical record text of knee osteoarthritis patients to support intelligent medical applications such as knowledge retrieval and decision support, and to promote the sharing of medical resources. After constructing the domain ontology of knee osteoarthritis and manually labeling, we trained a machine learning model to automatically perform entity recognition and entity relation extraction, and then used a graph database to construct the knowledge graph of knee osteoarthritis. The experiment proves that the knowledge graph is comprehensive and reliable, and the knowledge graph construction method proposed in this study is effective.

摘要

在本研究中,从膝骨关节炎患者的电子病历文本构建医学知识图谱,以支持诸如知识检索和决策支持等智能医疗应用,并促进医疗资源的共享。在构建膝骨关节炎的领域本体并进行人工标注后,我们训练了一个机器学习模型来自动执行实体识别和实体关系提取,然后使用图数据库构建膝骨关节炎的知识图谱。实验证明,该知识图谱是全面且可靠的,本研究提出的知识图谱构建方法是有效的。

相似文献

1
Automatic approach for constructing a knowledge graph of knee osteoarthritis in Chinese.
Health Inf Sci Syst. 2020 Feb 27;8(1):12. doi: 10.1007/s13755-020-0102-4. eCollection 2020 Dec.
2
Automatic knowledge extraction from Chinese electronic medical records and rheumatoid arthritis knowledge graph construction.
Quant Imaging Med Surg. 2023 Jun 1;13(6):3873-3890. doi: 10.21037/qims-22-1158. Epub 2023 May 8.
5
Real-world data medical knowledge graph: construction and applications.
Artif Intell Med. 2020 Mar;103:101817. doi: 10.1016/j.artmed.2020.101817. Epub 2020 Feb 6.
6
BCSLinker: automatic method for constructing a knowledge graph of venous thromboembolism based on joint learning.
Front Med (Lausanne). 2024 May 9;11:1272224. doi: 10.3389/fmed.2024.1272224. eCollection 2024.
8
Towards electronic health record-based medical knowledge graph construction, completion, and applications: A literature study.
J Biomed Inform. 2023 Jul;143:104403. doi: 10.1016/j.jbi.2023.104403. Epub 2023 May 24.

引用本文的文献

1
Knowledge graph and its application in the study of neurological and mental disorders.
Front Psychiatry. 2025 Mar 18;16:1452557. doi: 10.3389/fpsyt.2025.1452557. eCollection 2025.
2
A formal statechart model of immediate neonatal adaptation guidelines.
Heliyon. 2025 Feb 19;11(4):e42784. doi: 10.1016/j.heliyon.2025.e42784. eCollection 2025 Feb 28.
5
BCSLinker: automatic method for constructing a knowledge graph of venous thromboembolism based on joint learning.
Front Med (Lausanne). 2024 May 9;11:1272224. doi: 10.3389/fmed.2024.1272224. eCollection 2024.
7
MLEE: A method for extracting object-level medical knowledge graph entities from Chinese clinical records.
Front Genet. 2022 Jul 22;13:900242. doi: 10.3389/fgene.2022.900242. eCollection 2022.
8
Effect of Etoricoxib on miR-214 and inflammatory reaction in knee osteoarthritis patients.
Am J Transl Res. 2021 Aug 15;13(8):9586-9592. eCollection 2021.
9
Knowledge Graphs of Kawasaki Disease.
Health Inf Sci Syst. 2021 Feb 27;9(1):11. doi: 10.1007/s13755-020-00130-8. eCollection 2021 Dec.
10
Predicting the relationships between gut microbiota and mental disorders with knowledge graphs.
Health Inf Sci Syst. 2020 Nov 24;9(1):3. doi: 10.1007/s13755-020-00128-2. eCollection 2021 Dec.

本文引用的文献

1
A comprehensive study of named entity recognition in Chinese clinical text.
J Am Med Inform Assoc. 2014 Sep-Oct;21(5):808-14. doi: 10.1136/amiajnl-2013-002381. Epub 2013 Dec 17.
2
Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries.
J Am Med Inform Assoc. 2014 Feb;21(e1):e84-92. doi: 10.1136/amiajnl-2013-001806. Epub 2013 Aug 9.
3
Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):557-62. doi: 10.1136/amiajnl-2011-000150. Epub 2011 May 12.
4
5
Semantic relations for problem-oriented medical records.
Artif Intell Med. 2010 Oct;50(2):63-73. doi: 10.1016/j.artmed.2010.05.006. Epub 2010 Jun 19.
6
The Unified Medical Language System (UMLS): integrating biomedical terminology.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70. doi: 10.1093/nar/gkh061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验