Suppr超能文献

面向问题的病历的语义关系。

Semantic relations for problem-oriented medical records.

机构信息

University at Albany, State University of New York, 135 Western Ave., Draper 114A, Albany, NY 12222, USA.

出版信息

Artif Intell Med. 2010 Oct;50(2):63-73. doi: 10.1016/j.artmed.2010.05.006. Epub 2010 Jun 19.

Abstract

OBJECTIVE

We describe semantic relation (SR) classification on medical discharge summaries. We focus on relations targeted to the creation of problem-oriented records. Thus, we define relations that involve the medical problems of patients.

METHODS AND MATERIALS

We represent patients' medical problems with their diseases and symptoms. We study the relations of patients' problems with each other and with concepts that are identified as tests and treatments. We present an SR classifier that studies a corpus of patient records one sentence at a time. For all pairs of concepts that appear in a sentence, this SR classifier determines the relations between them. In doing so, the SR classifier takes advantage of surface, lexical, and syntactic features and uses these features as input to a support vector machine. We apply our SR classifier to two sets of medical discharge summaries, one obtained from the Beth Israel-Deaconess Medical Center (BIDMC), Boston, MA and the other from Partners Healthcare, Boston, MA.

RESULTS

On the BIDMC corpus, our SR classifier achieves micro-averaged F-measures that range from 74% to 95% on the various relation types. On the Partners corpus, the micro-averaged F-measures on the various relation types range from 68% to 91%. Our experiments show that lexical features (in particular, tokens that occur between candidate concepts, which we refer to as inter-concept tokens) are very informative for relation classification in medical discharge summaries. Using only the inter-concept tokens in the corpus, our SR classifier can recognize 84% of the relations in the BIDMC corpus and 72% of the relations in the Partners corpus.

CONCLUSION

These results are promising for semantic indexing of medical records. They imply that we can take advantage of lexical patterns in discharge summaries for relation classification at a sentence level.

摘要

目的

我们描述了对医疗出院小结进行语义关系(SR)分类。我们专注于针对创建面向问题的记录的关系。因此,我们定义了涉及患者医疗问题的关系。

方法和材料

我们用疾病和症状来表示患者的医疗问题。我们研究患者问题之间以及与被识别为测试和治疗的概念之间的关系。我们提出了一种 SR 分类器,该分类器一次研究一个患者记录的句子。对于出现在句子中的所有概念对,该 SR 分类器确定它们之间的关系。在这样做的过程中,SR 分类器利用了表面、词汇和句法特征,并将这些特征作为输入提供给支持向量机。我们将我们的 SR 分类器应用于两个医疗出院小结集,一个来自马萨诸塞州波士顿的 Beth Israel-Deaconess Medical Center(BIDMC),另一个来自马萨诸塞州波士顿的 Partners Healthcare。

结果

在 BIDMC 语料库上,我们的 SR 分类器在各种关系类型上的微平均 F1 分数范围为 74%至 95%。在 Partners 语料库上,各种关系类型的微平均 F1 分数范围为 68%至 91%。我们的实验表明,词汇特征(特别是出现在候选概念之间的标记,我们称之为概念间标记)对于医疗出院小结中的关系分类非常有用。仅使用语料库中的概念间标记,我们的 SR 分类器可以识别出 BIDMC 语料库中 84%的关系和 Partners 语料库中 72%的关系。

结论

这些结果为医疗记录的语义索引提供了希望。它们意味着我们可以利用出院小结中的词汇模式来进行句子级别的关系分类。

相似文献

1
Semantic relations for problem-oriented medical records.
Artif Intell Med. 2010 Oct;50(2):63-73. doi: 10.1016/j.artmed.2010.05.006. Epub 2010 Jun 19.
3
A semantic lexicon for medical language processing.
J Am Med Inform Assoc. 1999 May-Jun;6(3):205-18. doi: 10.1136/jamia.1999.0060205.
4
Causality patterns and machine learning for the extraction of problem-action relations in discharge summaries.
Int J Med Inform. 2017 Feb;98:1-12. doi: 10.1016/j.ijmedinf.2016.10.021. Epub 2016 Nov 9.
5
Use of semantic features to classify patient smoking status.
AMIA Annu Symp Proc. 2008 Nov 6;2008:450-4.
6
A classification approach to coreference in discharge summaries: 2011 i2b2 challenge.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):897-905. doi: 10.1136/amiajnl-2011-000734. Epub 2012 Apr 13.
7
Semantic classification of diseases in discharge summaries using a context-aware rule-based classifier.
J Am Med Inform Assoc. 2009 Jul-Aug;16(4):580-4. doi: 10.1197/jamia.M3087. Epub 2009 Apr 23.
8
Machine learning and rule-based approaches to assertion classification.
J Am Med Inform Assoc. 2009 Jan-Feb;16(1):109-15. doi: 10.1197/jamia.M2950. Epub 2008 Oct 24.
9
MCORES: a system for noun phrase coreference resolution for clinical records.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):906-12. doi: 10.1136/amiajnl-2011-000591. Epub 2012 Mar 14.

引用本文的文献

1
Dental Students' Opinions on Use of Artificial Intelligence: A Survey Study.
Med Sci Monit. 2025 Apr 30;31:e947658. doi: 10.12659/MSM.947658.
2
Learning Inter-Sentence, Disorder-Centric, Biomedical Relationships from Medical Literature.
AMIA Annu Symp Proc. 2020 Mar 4;2019:1216-1225. eCollection 2019.
3
Automatic approach for constructing a knowledge graph of knee osteoarthritis in Chinese.
Health Inf Sci Syst. 2020 Feb 27;8(1):12. doi: 10.1007/s13755-020-0102-4. eCollection 2020 Dec.
5
Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes.
J Am Med Inform Assoc. 2018 Jan 1;25(1):93-98. doi: 10.1093/jamia/ocx090.
7
Learning to identify treatment relations in clinical text.
AMIA Annu Symp Proc. 2014 Nov 14;2014:282-8. eCollection 2014.
8
Automatic lymphoma classification with sentence subgraph mining from pathology reports.
J Am Med Inform Assoc. 2014 Sep-Oct;21(5):824-32. doi: 10.1136/amiajnl-2013-002443. Epub 2014 Jan 15.
9
Using domain knowledge and domain-inspired discourse model for coreference resolution for clinical narratives.
J Am Med Inform Assoc. 2013 Mar-Apr;20(2):356-62. doi: 10.1136/amiajnl-2011-000767. Epub 2012 Jul 10.
10
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.

本文引用的文献

1
Extracting causal relations on HIV drug resistance from literature.
BMC Bioinformatics. 2010 Feb 23;11:101. doi: 10.1186/1471-2105-11-101.
2
Mining clinical relationships from patient narratives.
BMC Bioinformatics. 2008 Nov 19;9 Suppl 11(Suppl 11):S3. doi: 10.1186/1471-2105-9-S11-S3.
3
Machine learning and rule-based approaches to assertion classification.
J Am Med Inform Assoc. 2009 Jan-Feb;16(1):109-15. doi: 10.1197/jamia.M2950. Epub 2008 Oct 24.
4
Extraction of semantic biomedical relations from text using conditional random fields.
BMC Bioinformatics. 2008 Apr 23;9:207. doi: 10.1186/1471-2105-9-207.
6
RelEx--relation extraction using dependency parse trees.
Bioinformatics. 2007 Feb 1;23(3):365-71. doi: 10.1093/bioinformatics/btl616. Epub 2006 Dec 1.
7
Indexing UMLS Semantic Types for Medical Question-Answering.
Stud Health Technol Inform. 2005;116:805-10.
8
Automation of a problem list using natural language processing.
BMC Med Inform Decis Mak. 2005 Aug 31;5:30. doi: 10.1186/1472-6947-5-30.
9
Agreement, the f-measure, and reliability in information retrieval.
J Am Med Inform Assoc. 2005 May-Jun;12(3):296-8. doi: 10.1197/jamia.M1733. Epub 2005 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验