Suppr超能文献

使用中文出院小结中的对偶分解进行联合分割和命名实体识别。

Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries.

机构信息

State Key Laboratory of Software Development Environment, Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, China.

出版信息

J Am Med Inform Assoc. 2014 Feb;21(e1):e84-92. doi: 10.1136/amiajnl-2013-001806. Epub 2013 Aug 9.

Abstract

OBJECTIVE

In this paper, we focus on three aspects: (1) to annotate a set of standard corpus in Chinese discharge summaries; (2) to perform word segmentation and named entity recognition in the above corpus; (3) to build a joint model that performs word segmentation and named entity recognition.

DESIGN

Two independent systems of word segmentation and named entity recognition were built based on conditional random field models. In the field of natural language processing, while most approaches use a single model to predict outputs, many works have proved that performance of many tasks can be improved by exploiting combined techniques. Therefore, in this paper, we proposed a joint model using dual decomposition to perform both the two tasks in order to exploit correlations between the two tasks. Three sets of features were designed to demonstrate the advantage of the joint model we proposed, compared with independent models, incremental models and a joint model trained on combined labels.

MEASUREMENTS

Micro-averaged precision (P), recall (R), and F-measure (F) were used to evaluate results.

RESULTS

The gold standard corpus is created using 336 Chinese discharge summaries of 71 355 words. The framework using dual decomposition achieved 0.2% improvement for segmentation and 1% improvement for recognition, compared with each of the two tasks alone.

CONCLUSIONS

The joint model is efficient and effective in both segmentation and recognition compared with the two individual tasks. The model achieved encouraging results, demonstrating the feasibility of the two tasks.

摘要

目的

本文重点关注三个方面:(1)标注一组中文出院小结标准语料库;(2)在上述语料库中进行分词和命名实体识别;(3)构建一个联合模型,同时进行分词和命名实体识别。

设计

基于条件随机场模型构建了两个独立的分词和命名实体识别系统。在自然语言处理领域,虽然大多数方法使用单个模型来预测输出,但许多工作已经证明,通过利用组合技术,可以提高许多任务的性能。因此,本文提出了一种联合模型,使用双重分解来执行这两个任务,以利用两个任务之间的相关性。设计了三组特征,以证明与独立模型、增量模型和基于组合标签训练的联合模型相比,我们提出的联合模型的优势。

测量

使用微平均精度(P)、召回率(R)和 F 度量(F)来评估结果。

结果

使用 336 份包含 71355 个单词的中文出院小结创建了黄金标准语料库。与两个独立任务相比,使用双重分解的框架在分词方面提高了 0.2%,在识别方面提高了 1%。

结论

与两个独立任务相比,联合模型在分词和识别方面都更高效、更有效。该模型取得了令人鼓舞的结果,证明了这两个任务的可行性。

相似文献

2
A comprehensive study of named entity recognition in Chinese clinical text.中文临床文本命名实体识别的综合研究。
J Am Med Inform Assoc. 2014 Sep-Oct;21(5):808-14. doi: 10.1136/amiajnl-2013-002381. Epub 2013 Dec 17.

引用本文的文献

1
Named Entity Recognition in Electronic Health Records: A Methodological Review.电子健康记录中的命名实体识别:方法学综述
Healthc Inform Res. 2023 Oct;29(4):286-300. doi: 10.4258/hir.2023.29.4.286. Epub 2023 Oct 31.

本文引用的文献

2
Matching health information seekers' queries to medical terms.匹配健康信息搜索者的查询与医学术语。
BMC Bioinformatics. 2012;13 Suppl 14(Suppl 14):S11. doi: 10.1186/1471-2105-13-S14-S11. Epub 2012 Sep 7.
4
Combining joint models for biomedical event extraction.联合模型在生物医学事件抽取中的应用。
BMC Bioinformatics. 2012 Jun 26;13 Suppl 11(Suppl 11):S9. doi: 10.1186/1471-2105-13-S11-S9.
6
8
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.2010 i2b2/VA 挑战赛:临床文本中的概念、断言和关系
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.
10
Extracting medication information from clinical text.从临床文本中提取药物信息。
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):514-8. doi: 10.1136/jamia.2010.003947.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验